Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33658373

RESUMEN

Spontaneous deamination of DNA cytosine and adenine into uracil and hypoxanthine, respectively, causes C to T and A to G transition mutations if left unrepaired. Endonuclease Q (EndoQ) initiates the repair of these premutagenic DNA lesions in prokaryotes by cleaving the phosphodiester backbone 5' of either uracil or hypoxanthine bases or an apurinic/apyrimidinic (AP) lesion generated by the excision of these damaged bases. To understand how EndoQ achieves selectivity toward these structurally diverse substrates without cleaving undamaged DNA, we determined the crystal structures of Pyrococcus furiosus EndoQ bound to DNA substrates containing uracil, hypoxanthine, or an AP lesion. The structures show that substrate engagement by EndoQ depends both on a highly distorted conformation of the DNA backbone, in which the target nucleotide is extruded out of the helix, and direct hydrogen bonds with the deaminated bases. A concerted swing motion of the zinc-binding and C-terminal helical domains of EndoQ toward its catalytic domain allows the enzyme to clamp down on a sharply bent DNA substrate, shaping a deep active-site pocket that accommodates the extruded deaminated base. Within this pocket, uracil and hypoxanthine bases interact with distinct sets of amino acid residues, with positioning mediated by an essential magnesium ion. The EndoQ-DNA complex structures reveal a unique mode of damaged DNA recognition and provide mechanistic insights into the initial step of DNA damage repair by the alternative excision repair pathway. Furthermore, we demonstrate that the unique activity of EndoQ is useful for studying DNA deamination and repair in mammalian systems.


Asunto(s)
Proteínas Arqueales/química , ADN de Archaea/química , Endonucleasas/química , Pyrococcus furiosus/enzimología , Proteínas Arqueales/genética , Dominio Catalítico , ADN de Archaea/genética , Desaminación , Endonucleasas/genética , Pyrococcus furiosus/genética
2.
Nucleic Acids Res ; 46(19): 10474-10488, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30169742

RESUMEN

DNA ligases play essential roles in DNA replication and repair. Bacteriophage T4 DNA ligase is the first ATP-dependent ligase enzyme to be discovered and is widely used in molecular biology, but its structure remained unknown. Our crystal structure of T4 DNA ligase bound to DNA shows a compact α-helical DNA-binding domain (DBD), nucleotidyl-transferase (NTase) domain, and OB-fold domain, which together fully encircle DNA. The DBD of T4 DNA ligase exhibits remarkable structural homology to the core DNA-binding helices of the larger DBDs from eukaryotic and archaeal DNA ligases, but it lacks additional structural components required for protein interactions. T4 DNA ligase instead has a flexible loop insertion within the NTase domain, which binds tightly to the T4 sliding clamp gp45 in a novel α-helical PIP-box conformation. Thus, T4 DNA ligase represents a prototype of the larger eukaryotic and archaeal DNA ligases, with a uniquely evolved mode of protein interaction that may be important for efficient DNA replication.


Asunto(s)
ADN Ligasa (ATP)/química , ADN Ligasas/química , ADN/química , Conformación de Ácido Nucleico , Dominios Proteicos , Archaea/enzimología , Archaea/genética , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo , ADN Ligasas/genética , ADN Ligasas/metabolismo , ADN de Archaea/química , ADN de Archaea/genética , ADN de Archaea/metabolismo , Eucariontes/enzimología , Eucariontes/genética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa
3.
Viruses ; 13(4)2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921405

RESUMEN

APOBEC3B (A3B) is one of seven human APOBEC3 DNA cytosine deaminases that restrict viral infections as part of the overall innate immune response, but it also plays a major role in tumor evolution by mutating genomic DNA. Given the importance of A3B as a restriction factor of viral infections and as a driver of multiple human cancers, selective antibodies against A3B are highly desirable for its specific detection in various research and possibly diagnostic applications. Here, we describe a high-affinity minimal antibody, designated 5G7, obtained via a phage display screening against the C-terminal catalytic domain (ctd) of A3B. 5G7 also binds APOBEC3A that is highly homologous to A3Bctd but does not bind the catalytic domain of APOBEC3G, another Z1-type deaminase domain. The crystal structure of 5G7 shows a canonical arrangement of the heavy and light chain variable domains, with their complementarity-determining region (CDR) loops lining an antigen-binding cleft that accommodates a pair of α-helices. To understand the mechanism of A3Bctd recognition by 5G7, we used the crystal structures of A3Bctd and 5G7 as templates and computationally predicted the A3B-5G7 complex structure. Stable binding poses obtained by the simulation were further tested by site-directed mutagenesis and in vitro binding analyses. These studies mapped the epitope for 5G7 to a portion of C-terminal α6 helix of A3Bctd, with Arg374 playing an essential role. The same region of A3Bctd was used previously as a peptide antigen for generating a rabbit monoclonal antibody (mAb 5210-87-13), suggesting that this region is particularly immunogenic and that these antibodies from very different origins may share similar binding modes. Our studies provide a platform for the development of selective antibodies against A3B and other APOBEC3 family enzymes.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Citidina Desaminasa/inmunología , Citidina Desaminasa/metabolismo , Antígenos de Histocompatibilidad Menor/inmunología , Antígenos de Histocompatibilidad Menor/metabolismo , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/aislamiento & purificación , Anticuerpos Monoclonales/inmunología , Sitios de Unión de Anticuerpos , Cristalización , Células HEK293 , Humanos , Inmunidad Innata , Simulación de Dinámica Molecular , Unión Proteica , Anticuerpos de Cadena Única/metabolismo
4.
Nat Commun ; 11(1): 3121, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561747

RESUMEN

Integration of the reverse-transcribed viral DNA into host chromosomes is a critical step in the life-cycle of retroviruses, including an oncogenic delta(δ)-retrovirus human T-cell leukemia virus type-1 (HTLV-1). Retroviral integrase forms a higher order nucleoprotein assembly (intasome) to catalyze the integration reaction, in which the roles of host factors remain poorly understood. Here, we use cryo-electron microscopy to visualize the HTLV-1 intasome at 3.7-Šresolution. The structure together with functional analyses reveal that the B56γ (B'γ) subunit of an essential host enzyme, protein phosphatase 2 A (PP2A), is repurposed as an integral component of the intasome to mediate HTLV-1 integration. Our studies reveal a key host-virus interaction underlying the replication of an important human pathogen and highlight divergent integration strategies of retroviruses.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Virus Linfotrópico T Tipo 1 Humano/genética , Integrasas/metabolismo , Proteína Fosfatasa 2/genética , Proteínas Virales/metabolismo , Integración Viral/genética , Microscopía por Crioelectrón , ADN Viral/metabolismo , Células HEK293 , Virus Linfotrópico T Tipo 1 Humano/enzimología , Humanos , Integrasas/ultraestructura , Modelos Moleculares , Mutación Puntual , Unión Proteica/genética , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/ultraestructura , Proteínas Virales/ultraestructura
5.
Open Biol ; 9(8): 190117, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31409229

RESUMEN

Minichromosome maintenance protein 10 (Mcm10) is essential for DNA unwinding by the replisome during S phase. It is emerging as a promising anti-cancer target as MCM10 expression correlates with tumour progression and poor clinical outcomes. Here we used a competition-based fluorescence polarization (FP) high-throughput screening (HTS) strategy to identify compounds that inhibit Mcm10 from binding to DNA. Of the five active compounds identified, only the anti-parasitic agent suramin exhibited a dose-dependent decrease in replication products in an in vitro replication assay. Structure-activity relationship evaluation identified several suramin analogues that inhibited ssDNA binding by the human Mcm10 internal domain and full-length Xenopus Mcm10, including analogues that are selective for Mcm10 over human RPA. Binding of suramin analogues to Mcm10 was confirmed by surface plasmon resonance (SPR). SPR and FP affinity determinations were highly correlated, with a similar rank between affinity and potency for killing colon cancer cells. Suramin analogue NF157 had the highest human Mcm10 binding affinity (FP Ki 170 nM, SPR KD 460 nM) and cell activity (IC50 38 µM). Suramin and its analogues are the first identified inhibitors of Mcm10 and probably block DNA binding by mimicking the DNA sugar phosphate backbone due to their extended, polysulfated anionic structures.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Proteínas de Mantenimiento de Minicromosoma/antagonistas & inhibidores , Suramina/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/antagonistas & inhibidores , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/química , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Cinética , Proteínas de Mantenimiento de Minicromosoma/genética , Estructura Molecular , Unión Proteica , Suramina/análogos & derivados , Suramina/química , Xenopus
6.
Cell Rep ; 25(11): 2955-2962.e3, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30540931

RESUMEN

Double homeobox (DUX) transcription factors are unique to eutherian mammals. DUX4 regulates expression of repetitive elements during early embryogenesis, but misexpression of DUX4 causes facioscapulohumeral muscular dystrophy (FSHD) and translocations overexpressing the DUX4 double homeodomain cause B cell leukemia. Here, we report the crystal structure of the tandem homeodomains of DUX4 bound to DNA. The homeodomains bind DNA in a head-to-head fashion, with the linker making anchoring DNA minor-groove interactions and unique protein contacts. Remarkably, despite being tandem duplicates, the DUX4 homeodomains recognize different core sequences. This results from an arginine-to-glutamate mutation, unique to primates, causing alternative positioning of a key arginine side chain in the recognition helix. Mutational studies demonstrate that this primate-specific change is responsible for the divergence in sequence recognition that likely drove coevolution of embryonically regulated repeats in primates. Our work provides a framework for understanding the endogenous function of DUX4 and its role in FSHD and cancer.


Asunto(s)
ADN/química , ADN/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Cristalografía por Rayos X , Ratones , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA