RESUMEN
RATIONALE: Dual cell transplantation of cardiac progenitor cells (CPCs) and mesenchymal stem cells (MSCs) after infarction improves myocardial repair and performance in large animal models relative to delivery of either cell population. OBJECTIVE: To demonstrate that CardioChimeras (CCs) formed by fusion between CPCs and MSCs have enhanced reparative potential in a mouse model of myocardial infarction relative to individual stem cells or combined cell delivery. METHODS AND RESULTS: Two distinct and clonally derived CCs, CC1 and CC2, were used for this study. CCs improved left ventricular anterior wall thickness at 4 weeks post injury, but only CC1 treatment preserved anterior wall thickness at 18 weeks. Ejection fraction was enhanced at 6 weeks in CCs, and functional improvements were maintained in CCs and CPC+MSC groups at 18 weeks. Infarct size was decreased in CCs, whereas CPC+MSC and CPC parent groups remained unchanged at 12 weeks. CCs exhibited increased persistence, engraftment, and expression of early commitment markers within the border zone relative to combinatorial and individual cell population-injected groups. CCs increased capillary density and preserved cardiomyocyte size in the infarcted regions suggesting CCs role in protective paracrine secretion. CONCLUSIONS: CCs merge the application of distinct cells into a single entity for cellular therapeutic intervention in the progression of heart failure. CCs are a novel cell therapy that improves on combinatorial cell approaches to support myocardial regeneration.
Asunto(s)
Infarto de la Pared Anterior del Miocardio/cirugía , Ventrículos Cardíacos/fisiopatología , Trasplante de Células Madre Mesenquimatosas , Miocitos Cardíacos/trasplante , Regeneración , Quimera por Trasplante , Animales , Animales Recién Nacidos , Infarto de la Pared Anterior del Miocardio/metabolismo , Infarto de la Pared Anterior del Miocardio/patología , Infarto de la Pared Anterior del Miocardio/fisiopatología , Biomarcadores/metabolismo , Proliferación Celular , Tamaño de la Célula , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Femenino , Supervivencia de Injerto , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ratones , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Neovascularización Fisiológica , Comunicación Paracrina , Fenotipo , Ratas , Recuperación de la Función , Volumen Sistólico , Factores de Tiempo , Transfección , Función Ventricular IzquierdaRESUMEN
Ca(2+)/Calmodulin-dependent protein kinase II (CaMKII) signaling in the heart regulates cardiomyocyte contractility and growth in response to elevated intracellular Ca(2+). The δB isoform of CaMKII is the predominant nuclear splice variant in the adult heart and regulates cardiomyocyte hypertrophic gene expression by signaling to the histone deacetylase HDAC4. However, the role of CaMKIIδ in cardiac progenitor cells (CPCs) has not been previously explored. During post-natal growth endogenous CPCs display primarily cytosolic CaMKIIδ, which localizes to the nuclear compartment of CPCs after myocardial infarction injury. CPCs undergoing early differentiation in vitro increase levels of CaMKIIδB in the nuclear compartment where the kinase may contribute to the regulation of CPC commitment. CPCs modified with lentiviral-based constructs to overexpress CaMKIIδB (CPCeδB) have reduced proliferative rate compared with CPCs expressing eGFP alone (CPCe). Additionally, stable expression of CaMKIIδB promotes distinct morphological changes such as increased cell surface area and length of cells compared with CPCe. CPCeδB are resistant to oxidative stress induced by hydrogen peroxide (H2O2) relative to CPCe, whereas knockdown of CaMKIIδB resulted in an up-regulation of cell death and cellular senescence markers compared with scrambled treated controls. Dexamethasone (Dex) treatment increased mRNA and protein expression of cardiomyogenic markers cardiac troponin T and α-smooth muscle actin in CPCeδB compared with CPCe, suggesting increased differentiation. Therefore, CaMKIIδB may serve as a novel modulatory protein to enhance CPC survival and commitment into the cardiac and smooth muscle lineages.
Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Linaje de la Célula , Núcleo Celular/enzimología , Supervivencia Celular , Isoenzimas/metabolismo , Miocitos Cardíacos/citología , Transducción de Señal , Células Madre/citología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Técnicas de Silenciamiento del Gen , Isoenzimas/genética , Masculino , Ratones , Miocitos Cardíacos/enzimología , Células Madre/enzimologíaRESUMEN
Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated ß-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics.
Asunto(s)
Regulación de la Expresión Génica , Corazón/fisiología , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Células Madre/metabolismo , Apoptosis , Ciclo Celular , Núcleo Celular/metabolismo , Proliferación Celular , Supervivencia Celular , Senescencia Celular , Proteínas Fluorescentes Verdes/metabolismo , Insuficiencia Cardíaca , Ventrículos Cardíacos/metabolismo , Humanos , Lentivirus/metabolismo , Mitocondrias/metabolismo , Miocardio/citología , Miocardio/metabolismo , Fenotipo , Regeneración , Células Madre/citología , Fracciones Subcelulares/metabolismo , beta-Galactosidasa/metabolismoRESUMEN
Autologous c-kit(+) cardiac progenitor cells (CPCs) are currently used in the clinic to treat heart disease. CPC-based regeneration may be further augmented by better understanding molecular mechanisms of endogenous cardiac repair and enhancement of pro-survival signaling pathways that antagonize senescence while also increasing differentiation. The prolyl isomerase Pin1 regulates multiple signaling cascades by modulating protein folding and thereby activity and stability of phosphoproteins. In this study, we examine the heretofore unexplored role of Pin1 in CPCs. Pin1 is expressed in CPCs in vitro and in vivo and is associated with increased proliferation. Pin1 is required for cell cycle progression and loss of Pin1 causes cell cycle arrest in the G1 phase in CPCs, concomitantly associated with decreased expression of Cyclins D and B and increased expression of cell cycle inhibitors p53 and retinoblastoma (Rb). Pin1 deletion increases cellular senescence but not differentiation or cell death of CPCs. Pin1 is required for endogenous CPC response as Pin1 knock-out mice have a reduced number of proliferating CPCs after ischemic challenge. Pin1 overexpression also impairs proliferation and causes G2/M phase cell cycle arrest with concurrent down-regulation of Cyclin B, p53, and Rb. Additionally, Pin1 overexpression inhibits replicative senescence, increases differentiation, and inhibits cell death of CPCs, indicating that cell cycle arrest caused by Pin1 overexpression is a consequence of differentiation and not senescence or cell death. In conclusion, Pin1 has pleiotropic roles in CPCs and may be a molecular target to promote survival, enhance repair, improve differentiation, and antagonize senescence.
Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Senescencia Celular/fisiología , Miocardio/metabolismo , Isomerasa de Peptidilprolil/biosíntesis , Células Madre/metabolismo , Animales , Supervivencia Celular/fisiología , Ciclina B/genética , Ciclina B/metabolismo , Ciclina D/genética , Ciclina D/metabolismo , Ratones , Ratones Noqueados , Miocardio/citología , Peptidilprolil Isomerasa de Interacción con NIMA , Isomerasa de Peptidilprolil/genética , Células Madre/citología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
RATIONALE: Cardiac hypertrophy results from the complex interplay of differentially regulated cascades based on the phosphorylation status of involved signaling molecules. Although numerous critical regulatory kinases and phosphatases have been identified in the myocardium, the intracellular mechanism for temporal regulation of signaling duration and intensity remains obscure. In the nonmyocyte context, control of folding, activity, and stability of proteins is mediated by the prolyl isomerase Pin1, but the role of Pin1 in the heart is unknown. OBJECTIVE: To establish the role of Pin1 in the heart. METHODS AND RESULTS: Here, we show that either genetic deletion or cardiac overexpression of Pin1 blunts hypertrophic responses induced by transaortic constriction and consequent cardiac failure in vivo. Mechanistically, we find that Pin1 directly binds to Akt, mitogen activated protein kinase (MEK), and Raf-1 in cultured cardiomyocytes after hypertrophic stimulation. Furthermore, loss of Pin1 leads to diminished hypertrophic signaling of Akt and MEK, whereas overexpression of Pin1 increases Raf-1 phosphorylation on the autoinhibitory site Ser259, leading to reduced MEK activation. CONCLUSIONS: Collectively, these data support a role for Pin1 as a central modulator of the intensity and duration of 2 major hypertrophic signaling pathways, thereby providing a novel target for regulation and control of cardiac hypertrophy.
Asunto(s)
Cardiomegalia/enzimología , Miocitos Cardíacos/enzimología , Isomerasa de Peptidilprolil/metabolismo , Transducción de Señal , Animales , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Cardiomegalia/prevención & control , Dependovirus/genética , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Miocitos Cardíacos/patología , Peptidilprolil Isomerasa de Interacción con NIMA , Isomerasa de Peptidilprolil/deficiencia , Isomerasa de Peptidilprolil/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Ratas , Factores de Tiempo , Transducción Genética , Transfección , Ultrasonografía , Quinasas raf/metabolismoRESUMEN
BACKGROUND: Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy in elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. OBJECTIVES: This study sought to demonstrate that NS preserves characteristics associated with "stemness" in CPCs and antagonizes myocardial senescence and aging. METHODS: CPCs isolated from human fetal (fetal human cardiac progenitor cell [FhCPC]) and adult failing (adult human cardiac progenitor cell [AhCPC]) hearts, as well as young (young cardiac progenitor cell [YCPC]) and old mice (old cardiac progenitor cell [OCPC]), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with 1 functional allele of NS (NS+/-) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. RESULTS: NS expression is decreased in AhCPCs relative to FhCPCs, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble those of OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S-phase progression, diminished expression of stemness markers, and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of "stemness." Early cardiac aging with a decline in cardiac function, an increase in senescence markers p53 and p16, telomere attrition, and accompanied CPC exhaustion is evident in NS+/- mice. CONCLUSIONS: Youthful properties and antagonism of senescence in CPCs and the myocardium are consistent with a role for NS downstream from Pim-1 signaling that enhances cardiac regeneration.