Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Haematologica ; 106(6): 1659-1670, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32354868

RESUMEN

Hematopoietic Stem and Progenitor Cells are crucial in the maintenance of lifelong production of all blood cells. These Stem Cells are highly regulated to maintain homeostasis through a delicate balance between quiescence, self-renewal and differentiation. However, this balance is altered during the hematopoietic recovery after Hematopoietic Stem and Progenitor Cell Transplantation. Transplantation efficacy can be limited by inadequate Hematopoietic Stem Cells number, poor homing, low level of engraftment, or limited self-renewal. As recent evidences indicate that estrogens are involved in regulating the hematopoiesis, we sought to examine whether natural estrogens (estrone or E1, estradiol or E2, estriol or E3 and estetrol or E4) modulate human Hematopoietic Stem and Progenitor Cells. Our results show that human Hematopoietic Stem and Progenitor Cell subsets express estrogen receptors, and whose signaling is activated by E2 and E4 on these cells. Additionally, these natural estrogens cause different effects on human Progenitors in vitro. We found that both E2 and E4 expand human Hematopoietic Stem and Progenitor Cells. However, E4 was the best tolerated estrogen and promoted cell cycle of human Hematopoietic Progenitors. Furthermore, we identified that E2 and, more significantly, E4 doubled human hematopoietic engraftment in immunodeficient mice without altering other Hematopoietic Stem and Progenitor Cells properties. Finally, the impact of E4 on promoting human hematopoietic engraftment in immunodeficient mice might be mediated through the regulation of mesenchymal stromal cells in the bone marrow niche. Together, our data demonstrate that E4 is well tolerated and enhances human reconstitution in immunodeficient mice, directly by modulating human Hematopoietic Progenitor properties and indirectly by interacting with the bone marrow niche. This application might have particular relevance to ameliorate the hematopoietic recovery after myeloablative conditioning, especially when limiting numbers of Hematopoietic Stem and Progenitor Cells are available.


Asunto(s)
Estrógenos , Trasplante de Células Madre Hematopoyéticas , Animales , Estrógenos/farmacología , Hematopoyesis , Células Madre Hematopoyéticas , Humanos , Ratones , Acondicionamiento Pretrasplante
2.
Mol Ther ; 24(7): 1187-98, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27138040

RESUMEN

Pyruvate kinase deficiency (PKD) is a monogenic metabolic disease caused by mutations in the PKLR gene that leads to hemolytic anemia of variable symptomatology and that can be fatal during the neonatal period. PKD recessive inheritance trait and its curative treatment by allogeneic bone marrow transplantation provide an ideal scenario for developing gene therapy approaches. Here, we provide a preclinical gene therapy for PKD based on a lentiviral vector harboring the hPGK eukaryotic promoter that drives the expression of the PKLR cDNA. This therapeutic vector was used to transduce mouse PKD hematopoietic stem cells (HSCs) that were subsequently transplanted into myeloablated PKD mice. Ectopic RPK expression normalized the erythroid compartment correcting the hematological phenotype and reverting organ pathology. Metabolomic studies demonstrated functional correction of the glycolytic pathway in RBCs derived from genetically corrected PKD HSCs, with no metabolic disturbances in leukocytes. The analysis of the lentiviral insertion sites in the genome of transplanted hematopoietic cells demonstrated no evidence of genotoxicity in any of the transplanted animals. Overall, our results underscore the therapeutic potential of the hPGK-coRPK lentiviral vector and provide high expectations toward the gene therapy of PKD and other erythroid metabolic genetic disorders.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica/genética , Anemia Hemolítica Congénita no Esferocítica/terapia , Terapia Genética , Piruvato Quinasa/deficiencia , Errores Innatos del Metabolismo del Piruvato/genética , Errores Innatos del Metabolismo del Piruvato/terapia , Anemia Hemolítica Congénita no Esferocítica/metabolismo , Animales , Células Sanguíneas/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad , Eritrocitos/citología , Eritrocitos/metabolismo , Eritropoyesis , Terapia Genética/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/genética , Glucólisis , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Lentivirus/genética , Redes y Vías Metabólicas , Metaboloma , Metabolómica , Ratones , Ratones Transgénicos , Mutación , Fenotipo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Errores Innatos del Metabolismo del Piruvato/metabolismo , Transducción Genética
3.
J Physiol Biochem ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787512

RESUMEN

Olive oil is the main source of lipid energy in the Mediterranean diet and there is strong evidence of its health benefits. The effect of extra virgin olive oil (EVOO) in the form of a preparation of spreadable virgin olive oil (S-VO) on the progression of atheroma plaques was investigated in Apoe-deficient mice, a model of accelerated atherosclerosis. METHODS: Two isocaloric Western purified diets containing 20% fat, either as S-VO or as dairy butter, were used to feed 28 males and 16 females of two-month-old Apoe-deficient mice for 12 weeks. S-VO was prepared by blending more than 75% virgin olive oil with other vegetal natural fat to obtain a solid fat. Plasma total cholesterol, triglycerides and HDL cholesterol were measured. Hepatic lipid droplets were analyzed. Areas of atherosclerotic aortic lesions were quantified in cross-sectional images of the proximal aorta and en face analysis of the whole aorta. RESULTS: Total plasma cholesterol was increased in mice on the butter-supplemented diet in both female and male mice compared to S-VO, and the ratio of TC/HDL-cholesterol was significantly lower in S-VO than in the butter diet, although only in males, and no differences in plasma triglycerides were observed. No significant differences in hepatic lipid droplets were observed between diets in either sex. Aortic lesion areas were significantly higher in mice consuming the butter versus the S-VO diet in both sexes. CONCLUSION: Extra virgin olive oil prepared in spreadable form maintained the delay in atheroma plaque progression compared to butter.

4.
Br J Nutr ; 109(2): 202-9, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23302442

RESUMEN

Epidemiological studies have demonstrated the benefits of nut consumption on cardiovascular risk factors and CHD, attributed to their fatty acid profile, rich in unsaturated fatty acids, and also to other nutrients. The effect of nuts on atherosclerotic lesions was studied in female and male apoE-knockout mice fed a diet supplemented with 3 % (w/w) mixed nuts (mix: almonds, hazelnuts and walnuts in a proportion of 0.25:0·25:0.50, respectively), and compared with mice receiving an isoenergetic diet of similar fat content provided as palm oil. After 12 weeks, plasma lipid parameters and aortic lesions were measured. Males receiving nuts had lower plasma cholesterol than the palm oil group, and both sex groups had lower plasma non-HDL-cholesterol and lower content of reactive oxygen species in LDL than mice receiving the palm oil diet, the latter decrease being more pronounced in females than in males. Females consuming the nut diet showed a smaller aortic lesion area than those consuming palm oil, whereas no differences were observed in males. In females, hepatic paraoxonase 2 (Pon2) mRNA increased, and no change was observed in prenylcysteine oxidase 1 (Pcyox1) expression after the consumption of the nut-containing diet. In addition, aortic atherosclerotic lesions correlated directly with total plasma cholesterol and inversely with hepatic Pon2 expression. The results suggest that the beneficial effect of nut intake in female apoE-deficient mice may be attributed to reduced non-HDL-cholesterol levels and enhanced PON2 antioxidant activity.


Asunto(s)
Aterosclerosis/dietoterapia , Grasas Insaturadas en la Dieta/uso terapéutico , Modelos Animales de Enfermedad , Nueces , Placa Aterosclerótica/prevención & control , Animales , Aorta/patología , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Arildialquilfosfatasa/genética , Arildialquilfosfatasa/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Corylus/química , Grasas Insaturadas en la Dieta/análisis , Progresión de la Enfermedad , Femenino , Regulación Enzimológica de la Expresión Génica , Juglans/química , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Nueces/química , Estrés Oxidativo , Aceite de Palma , Aceites de Plantas/química , Aceites de Plantas/uso terapéutico , Placa Aterosclerótica/etiología , Prunus/química , Caracteres Sexuales
5.
PLoS One ; 14(10): e0223775, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31618280

RESUMEN

Pyruvate Kinase Deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene, which encodes the erythroid specific Pyruvate Kinase enzyme. Erythrocytes from PKD patients show an energetic imbalance and are susceptible to hemolysis. Gene editing of hematopoietic stem cells (HSCs) would provide a therapeutic benefit and improve safety of gene therapy approaches to treat PKD patients. In previous studies, we established a gene editing protocol that corrected the PKD phenotype of PKD-iPSC lines through a TALEN mediated homologous recombination strategy. With the goal of moving toward more clinically relevant stem cells, we aim at editing the PKLR gene in primary human hematopoietic progenitors and hematopoietic stem cells (HPSCs). After nucleofection of the gene editing tools and selection with puromycin, up to 96% colony forming units showed precise integration. However, a low yield of gene edited HPSCs was associated to the procedure. To reduce toxicity while increasing efficacy, we worked on i) optimizing gene editing tools and ii) defining optimal expansion and selection times. Different versions of specific nucleases (TALEN and CRISPR-Cas9) were compared. TALEN mRNAs with 5' and 3' added motifs to increase RNA stability were the most efficient nucleases to obtain high gene editing frequency and low toxicity. Shortening ex vivo manipulation did not reduce the efficiency of homologous recombination and preserved the hematopoietic progenitor potential of the nucleofected HPSCs. Lastly, a very low level of gene edited HPSCs were detected after engraftment in immunodeficient (NSG) mice. Overall, we showed that gene editing of the PKLR gene in HPSCs is feasible, although further improvements must to be done before the clinical use of the gene editing to correct PKD.


Asunto(s)
Edición Génica/métodos , Células Madre Hematopoyéticas/citología , Piruvato Quinasa/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Células Cultivadas , Células HEK293 , Células Madre Hematopoyéticas/química , Humanos , Ratones
6.
J Nutr Biochem ; 18(6): 418-24, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17049830

RESUMEN

Oils enriched in monounsaturated fatty acids do not seem to behave similarly in protecting against the development of atherosclerosis in animal models, which has been attributed to the presence of soluble phenolic compounds. To test the relevance of other components of oils in the prevention of atherosclerosis, two olive oils from the same cultivar devoid of soluble phenolic compounds were prepared using different procedures (pressure or centrifugation), characterized and fed to apolipoprotein E-deficient mice as 10% (w/w) of their diet. The 2 olive oils had similar levels of monounsaturated fatty acids and squalene, but they differed in their content of linoleic, phytosterols, tocopherols, triterpenes and waxes, which were particularly enriched in the test olive oil obtained by centrifugation. In mice that received a diet enriched in the olive oil derived through centrifugation, the progression of atherosclerosis was delayed compared to the mice that received standard olive oil. That effect was associated with decreases in plasma triglycerides, total and non-high-density lipoprotein cholesterol and isoprostane 8-iso-prostaglandin F(2alpha). Our results clearly indicate that the preparation of olive oil is crucial in determining its antiatherosclerotic effect, which extends beyond the presence of phenolic compounds. The test olive oil exerted its antiatherosclerotic effects by modifying plasma lipids and oxidative stress, and it might be a good candidate to replace other fats in functional foods.


Asunto(s)
Apolipoproteínas E/deficiencia , Aterosclerosis/prevención & control , Aceites de Plantas/uso terapéutico , Animales , Apolipoproteínas E/genética , Aterosclerosis/genética , Peso Corporal/efectos de los fármacos , Colesterol/sangre , Colesterol en la Dieta , Ácidos Grasos no Esterificados/análisis , Homocigoto , Hígado/anatomía & histología , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Aceite de Oliva , Tamaño de los Órganos/efectos de los fármacos , Aceites de Plantas/química , Triglicéridos/sangre
7.
J Biochem ; 140(3): 383-91, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16873395

RESUMEN

Hydroxytyrosol is a phenol found in olive oil. To verify the effect of hydroxytyrosol on the development of atherosclerosis, two groups of apo E deficient male mice on a standard chow diet were used: the control group receiving only water, and the second group an aqueous solution of hydroxytyrosol in order to provide a dose of 10 mg/kg/day to each mouse. This treatment was maintained for 10 weeks. At the moment of sacrifice, blood was drawn and heart removed. Plasma lipids, apolipoproteins and monocyte Mac-1 expression were assayed as well as aortic atherosclerotic areas in both groups. Data showed no significant changes in HDL cholesterol, paraoxonase, apolipoprotein B or triglyceride levels. However, hydroxytyrosol administration decreased apolipoprotein A-I and increased total cholesterol, atherosclerotic lesion areas and circulating monocytes expressing Mac-1. The latter was highly correlated with lesion areas (r = 0.65, P < 0.01). These results indicate that administration of hydroxytyrosol in low cholesterol diets increases atherosclerotic lesion associated with the degree of monocyte activation and remodelling of plasma lipoproteins. Our data supports the concept that phenolic-enriched products, out of the original matrix, could be not only non useful but also harmful. Our results suggest that the formulation of possible functional foods should approximate as much as possible the natural environment in which active molecules are found.


Asunto(s)
Apolipoproteína A-I/sangre , Apolipoproteínas E/deficiencia , Enfermedad de la Arteria Coronaria/patología , Alcohol Feniletílico/análogos & derivados , Animales , Apolipoproteínas B/sangre , Arildialquilfosfatasa/sangre , HDL-Colesterol/sangre , Enfermedad de la Arteria Coronaria/inducido químicamente , Cartilla de ADN , Antígeno de Macrófago-1/genética , Antígeno de Macrófago-1/metabolismo , Masculino , Ratones , Monocitos/metabolismo , Alcohol Feniletílico/administración & dosificación , Alcohol Feniletílico/toxicidad , Alcohol Feniletílico/orina , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Triglicéridos/sangre
8.
Stem Cell Reports ; 5(6): 1053-1066, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26549847

RESUMEN

Pyruvate kinase deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs) from peripheral blood mononuclear cells (PB-MNCs) of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR). Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica/genética , Anemia Hemolítica Congénita no Esferocítica/terapia , Células Eritroides/citología , Células Madre Pluripotentes Inducidas/metabolismo , Piruvato Quinasa/deficiencia , Piruvato Quinasa/genética , Errores Innatos del Metabolismo del Piruvato/genética , Errores Innatos del Metabolismo del Piruvato/terapia , Alelos , Secuencia de Bases , Recuento de Células , ADN Complementario/genética , Células Eritroides/metabolismo , Marcación de Gen , Terapia Genética , Humanos , Leucocitos Mononucleares/metabolismo , Recombinación Genética
9.
J Atheroscler Thromb ; 17(7): 712-21, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20460831

RESUMEN

AIM: Research suggests that sex may condition atherosclerosis development against different genetic backgrounds. This study addresses the hypothesis that this effect would be exerted by changes in the different apolipoproteins present in high-density lipoproteins. METHODS: ApoE-deficient mice of both sexes with Ola 129 and C57BL/6J genetic backgrounds were fed a chow diet for 14 weeks. At the end of the dietary intervention, the development of atherosclerotic lesions, apolipoproteins, lipid metabolism, inflammation and paraoxonase were assessed. RESULTS: Differences between atherosclerotic lesions in Ola 129 and C57BL/6J strains of apoE-deficient mice were sex-dependent and were only statistically significant in females. Plasma levels of HDL cholesterol and apolipoproteins related to these lipoparticles, such as apoA-I, apoA-II, apoA-IV, apoA-V and apoJ, were significantly different between these two strains and there were sex-related differences in some of these apolipoproteins. Hepatic steatosis was also related to the strain and was independent of sex. In females, changes in HDL cholesterol and apolipoproteins A-I and A-II were important determinants of atherosclerosis, while this was not the case in males. CONCLUSIONS: Our results demonstrate that atherosclerosis-related differences between Ola129 and C57BL/6J genetic backgrounds in apoE-deficient mice are sex-dependent and that this finding is explained by the differences in HDL cholesterol and its apolipoprotein components, mainly apoA-I and A-II. Overall, our findings highlight the importance of taking sex into account in the analysis of atherosclerosis and lipid metabolism in animal models.


Asunto(s)
Apolipoproteínas E/fisiología , Aterosclerosis/metabolismo , Animales , Antioxidantes/metabolismo , Apolipoproteínas/sangre , Arildialquilfosfatasa/metabolismo , HDL-Colesterol/sangre , Dieta Aterogénica , Femenino , Homocigoto , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores Sexuales
10.
Atherosclerosis ; 197(1): 72-83, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17854812

RESUMEN

BACKGROUND: Squalene is an intermediate of cholesterol biosynthesis which can be obtained from the diet where it is abundant, for example, in olive oil. The effect of this isoprenoid on the development of atherosclerosis was investigated on apoE-knockout mice. METHODS AND RESULTS: Two groups of animals, separated according to sex, were fed on standard chow diet: the control group receiving only vehicle and the second group an aqueous solution of squalene to provide a dose of 1g/kg/day in male and female mice. This treatment was maintained for 10 weeks. At the end of this period, plasma lipid parameters, oxidative stress markers and hepatic fat were measured as well as cross-sectional lesion area of aortic root in both groups. Data showed that in males squalene feeding reduced atherosclerotic lesion area independently of plasma lipids and activation of circulating monocytes. In contrast, squalene intake did not decrease lesion area in females, despite reducing plasma cholesterol and triglycerides, isoprostane and percentage of Mac-1 expressing white cells. In males, atherosclerotic lesion area was positively and significantly associated with hepatic fat content and the plasma triglycerides were also strongly associated with liver weight. CONCLUSIONS: These results indicate that administration of squalene modulates lesion development in a gender specific manner, and that accumulation of hepatic fat by liver is highly correlated with lesion progression in males. Hence, squalene administration could be used as a safe alternative to correct hepatic steatosis and atherosclerosis particularly in males.


Asunto(s)
Apolipoproteínas E/genética , Aterosclerosis/tratamiento farmacológico , Hígado Graso/tratamiento farmacológico , Caracteres Sexuales , Escualeno/farmacología , Animales , Apolipoproteína A-I/sangre , Apolipoproteína A-I/genética , Apolipoproteína A-V , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Arildialquilfosfatasa/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Peso Corporal/efectos de los fármacos , Antígeno CD11b/metabolismo , Colesterol/sangre , Proteínas de Unión al ADN/efectos de los fármacos , Dinoprost/análogos & derivados , Dinoprost/sangre , Hígado Graso/genética , Hígado Graso/patología , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Nucleares Huérfanos , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Receptores de LDL/genética , Receptores Depuradores de Clase B/genética , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA