Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 31(3): 372-379, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33547183

RESUMEN

The Amazon molly is a unique clonal fish species that originated from an interspecies hybrid between Poecilia species P. mexicana and P. latipinna It reproduces by gynogenesis, which eliminates paternal genomic contribution to offspring. An earlier study showed that Amazon molly shows biallelic expression for a large portion of the genome, leading to two main questions: (1) Are the allelic expression patterns from the initial hybridization event stabilized or changed during establishment of the asexual species and its further evolution? (2) Is allelic expression biased toward one parental allele a stochastic or adaptive process? To answer these questions, the allelic expression of P. formosa siblings was assessed to investigate intra- and inter-cohort allelic expression variability. For comparison, interspecies hybrids between P. mexicana and P. latipinna were produced in the laboratory to represent the P. formosa ancestor. We have identified inter-cohort and intra-cohort variation in parental allelic expression. The existence of inter-cohort divergence suggests functional P. formosa allelic expression patterns do not simply reflect the atavistic situation of the first interspecies hybrid but potentially result from long-term selection of transcriptional fitness. In addition, clonal fish show a transcriptional trend representing minimal intra-clonal variability in allelic expression patterns compared to the corresponding hybrids. The intra-clonal similarity in gene expression translates to sophisticated genetic functional regulation at the individuum level. These findings suggest the parental alleles inherited by P. formosa form tightly regulated genetic networks that lead to a stable transcriptomic landscape within clonal individuals.


Asunto(s)
Alelos , Poecilia/genética , Transcriptoma , Animales , Femenino , Regulación de la Expresión Génica , Hibridación Genética , Masculino
2.
Chromosome Res ; 30(4): 443-457, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36459298

RESUMEN

Unisexual reproduction, which generates clonal offspring, is an alternative strategy to sexual breeding and occurs even in vertebrates. A wide range of non-sexual reproductive modes have been described, and one of the least understood questions is how such pathways emerged and how they mechanistically proceed. The Amazon molly, Poecilia formosa, needs sperm from males of related species to trigger the parthenogenetic development of diploid eggs. However, the mechanism, of how the unreduced female gametes are produced, remains unclear. Cytological analyses revealed that the chromosomes of primary oocytes initiate pachytene but do not proceed to bivalent formation and meiotic crossovers. Comparing ovary transcriptomes of P. formosa and its sexual parental species revealed expression levels of meiosis-specific genes deviating from P. mexicana but not from P. latipinna. Furthermore, several meiosis genes show biased expression towards one of the two alleles from the parental genomes. We infer from our data that in the Amazon molly diploid oocytes are generated by apomixis due to a failure in the synapsis of homologous chromosomes. The fact that this failure is not reflected in the differential expression of known meiosis genes suggests the underlying molecular mechanism may be dysregulation on the protein level or misexpression of a so far unknown meiosis gene, and/or hybrid dysgenesis because of compromised interaction of proteins from diverged genomes.


Asunto(s)
Poecilia , Animales , Femenino , Masculino , Poecilia/genética , Taiwán , Semen , Transcriptoma , Meiosis
3.
Gen Comp Endocrinol ; 295: 113521, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32470471

RESUMEN

Fish of the genus Xiphophorus provide a prominent example of genetic control of male body size and reproductive tactics. In X.nigrensis and X.multilineatus, puberty onset and body length are determined by melanocortin 4 receptor (Mc4r) allelic and copy number variations which were proposed to fine-tune the signaling output of the system. Accessory protein Mrap2 is required for growth across species by affecting Mc4r signaling. The molecular mechanism how Mc4r signaling controls puberty regulation in Xiphophorus and whether the interaction with Mrap2 is also involved was so far unclear. Hence, we examined Mc4r and Mrap2 in X.nigrensis and X.multilineatus, in comparison to a more distantly related species, X.hellerii. mc4r and mrap2 transcripts co-localized in the hypothalamus and preoptic regions in large males, small males and females of X.nigrensis, with similar signal strength for mrap2 but higher expression of mc4r in large males. This overexpression is constituted by wild-type and one subtype of mutant alleles. In vitro studies revealed that Mrap2 co-expressed with Mc4r increased cAMP production but did not change EC50. Cells co-expressing the wild-type and one mutant allele showed lower cAMP signaling than Mc4r wild-type cells. This indicates a role of Mc4r alleles, but not Mrap2, in puberty signaling. Different from X.nigrensis and X.multilineatus, X.hellerii has only wild-type alleles, but also shows a puberty onset and body length polymorphism, despite the absence of mutant alleles. Like in the two other species, mc4r and mrap2 transcripts colocalized and mc4r is expressed at substantially higher levels in large males. This demonstrates that puberty and growth regulation mechanism may not be identical even within same genus.


Asunto(s)
Ciprinodontiformes/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Maduración Sexual/fisiología , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Ciprinodontiformes/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Melanocortina Tipo 4/química , Receptor de Melanocortina Tipo 4/genética
4.
Science ; 376(6597): 1087-1094, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35653469

RESUMEN

Structural maintenance of chromosomes (SMC) protein complexes structure genomes by extruding DNA loops, but the molecular mechanism that underlies their activity has remained unknown. We show that the active condensin complex entraps the bases of a DNA loop transiently in two separate chambers. Single-molecule imaging and cryo-electron microscopy suggest a putative power-stroke movement at the first chamber that feeds DNA into the SMC-kleisin ring upon adenosine triphosphate binding, whereas the second chamber holds on upstream of the same DNA double helix. Unlocking the strict separation of "motor" and "anchor" chambers turns condensin from a one-sided into a bidirectional DNA loop extruder. We conclude that the orientation of two topologically bound DNA segments during the SMC reaction cycle determines the directionality of DNA loop extrusion.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Unión al ADN , ADN , Complejos Multiproteicos , Adenosina Trifosfatasas/química , Microscopía por Crioelectrón , ADN/química , Proteínas de Unión al ADN/química , Complejos Multiproteicos/química , Conformación de Ácido Nucleico , Imagen Individual de Molécula
5.
Curr Biol ; 31(5): 911-922.e4, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33275891

RESUMEN

Sexual selection results in sex-specific characters like the conspicuously pigmented extension of the ventral tip of the caudal fin-the "sword"-in males of several species of Xiphophorus fishes. To uncover the genetic architecture underlying sword formation and to identify genes that are associated with its development, we characterized the sword transcriptional profile and combined it with genetic mapping approaches. Results showed that the male ornament of swordtails develops from a sexually non-dimorphic prepattern of transcription factors in the caudal fin. Among genes that constitute the exclusive sword transcriptome and are located in the genomic region associated with this trait we identify the potassium channel, Kcnh8, as a sword development gene. In addition to its neural function kcnh8 performs a known role in fin growth. These findings indicate that during evolution of swordtails a brain gene has been co-opted for an additional novel function in establishing a male ornament.


Asunto(s)
Aletas de Animales/anatomía & histología , Aletas de Animales/fisiología , Ciprinodontiformes/anatomía & histología , Ciprinodontiformes/genética , Preferencia en el Apareamiento Animal , Caracteres Sexuales , Aletas de Animales/embriología , Animales , Ciprinodontiformes/embriología , Femenino , Masculino , Fenotipo , Factores de Transcripción/metabolismo , Transcriptoma
6.
Sci Rep ; 9(1): 5293, 2019 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-30923320

RESUMEN

We have sequenced the genome of the largest freshwater fish species of the world, the arapaima. Analysis of gene family dynamics and signatures of positive selection identified genes involved in the specific adaptations and unique features of this iconic species, in particular it's large size and fast growth. Genome sequences from both sexes combined with RAD-tag analyses from other males and females led to the isolation of male-specific scaffolds and supports an XY sex determination system in arapaima. Whole transcriptome sequencing showed that the product of the gland-like secretory organ on the head surface of males and females may not only provide nutritional fluid for sex-unbiased parental care, but that the organ itself has a more specific function in males, which engage more in parental care.


Asunto(s)
Peces/genética , Genoma , Gigantismo/genética , Procesos de Determinación del Sexo/genética , Transcriptoma/genética , Animales , Conducta Animal , Femenino , Peces/crecimiento & desarrollo , Agua Dulce , Masculino , Anotación de Secuencia Molecular , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA