Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Pathog ; 20(7): e1012345, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968329

RESUMEN

The CRISPR-Cas13 system has been proposed as an alternative treatment of viral infections. However, for this approach to be adopted as an antiviral, it must be optimized until levels of efficacy rival or exceed the performance of conventional approaches. To take steps toward this goal, we evaluated the influenza viral RNA degradation patterns resulting from the binding and enzymatic activity of mRNA-encoded LbuCas13a and two crRNAs from a prior study, targeting PB2 genomic and messenger RNA. We found that the genome targeting guide has the potential for significantly higher potency than originally detected, because degradation of the genomic RNA is not uniform across the PB2 segment, but it is augmented in proximity to the Cas13 binding site. The PB2 genome targeting guide exhibited high levels (>1 log) of RNA degradation when delivered 24 hours post-infection in vitro and maintained that level of degradation over time, with increasing multiplicity of infection (MOI), and across modern influenza H1N1 and H3N2 strains. Chemical modifications to guides with potent LbuCas13a function, resulted in nebulizer delivered efficacy (>1-2 log reduction in viral titer) in a hamster model of influenza (Influenza A/H1N1/California/04/09) infection given prophylactically or as a treatment (post-infection). Maximum efficacy was achieved with two doses, when administered both pre- and post-infection. This work provides evidence that mRNA-encoded Cas13a can effectively mitigate Influenza A infections opening the door to the development of a programmable approach to treating multiple respiratory infections.

2.
Nat Mater ; 22(3): 369-379, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36443576

RESUMEN

Messenger RNA has now been used to vaccinate millions of people. However, the diversity of pulmonary pathologies, including infections, genetic disorders, asthma and others, reveals the lung as an important organ to directly target for future RNA therapeutics and preventatives. Here we report the screening of 166 polymeric nanoparticle formulations for functional delivery to the lungs, obtained from a combinatorial synthesis approach combined with a low-dead-volume nose-only inhalation system for mice. We identify P76, a poly-ß-amino-thio-ester polymer, that exhibits increased expression over formulations lacking the thiol component, delivery to different animal species with varying RNA cargos and low toxicity. P76 allows for dose sparing when delivering an mRNA-expressed Cas13a-mediated treatment in a SARS-CoV-2 challenge model, resulting in similar efficacy to a 20-fold higher dose of a neutralizing antibody. Overall, the combinatorial synthesis approach allowed for the discovery of promising polymeric formulations for future RNA pharmaceutical development for the lungs.


Asunto(s)
COVID-19 , Animales , Ratones , ARN Mensajero/genética , SARS-CoV-2/genética , Polímeros/metabolismo , Pulmón , ARN/metabolismo
3.
J Virol ; 95(9)2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33536179

RESUMEN

Influenza virus causes epidemics and sporadic pandemics resulting in morbidity, mortality, and economic losses. Influenza viruses require host genes to replicate. RNA interference (RNAi) screens can identify host genes coopted by influenza virus for replication. Targeting these proinfluenza genes can provide therapeutic strategies to reduce virus replication. Nineteen proinfluenza G-protein-coupled receptor (GPCR) and 13 proinfluenza ion channel genes were identified in human lung (A549) cells by use of small interfering RNAs (siRNAs). These proinfluenza genes were authenticated by testing influenza virus A/WSN/33-, A/CA/04/09-, and B/Yamagata/16/1988-infected A549 cells, resulting in the validation of 16 proinfluenza GPCR and 5 proinfluenza ion channel genes. These findings showed that several GPCR and ion channel genes are needed for the production of infectious influenza virus. These data provide potential targets for the development of host-directed therapeutic strategies to impede the influenza virus productive cycle so as to limit infection.IMPORTANCE Influenza epidemics result in morbidity and mortality each year. Vaccines are the most effective preventive measure but require annual reformulation, since a mismatch of vaccine strains can result in vaccine failure. Antiviral measures are desirable particularly when vaccines fail. In this study, we used RNAi screening to identify several GPCR and ion channel genes needed for influenza virus replication. Understanding the host genes usurped by influenza virus during viral replication can help identify host genes that can be targeted for drug repurposing or for the development of antiviral drugs. The targeting of host genes is refractory to drug resistance generated by viral mutations, as well as providing a platform for the development of broad-spectrum antiviral drugs.


Asunto(s)
Interacciones Microbiota-Huesped , Subtipo H1N1 del Virus de la Influenza A/fisiología , Virus de la Influenza B/fisiología , Gripe Humana/virología , Canales Iónicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células A549 , Animales , Perros , Humanos , Células de Riñón Canino Madin Darby , Replicación Viral
4.
J Gen Virol ; 102(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34787540

RESUMEN

Influenza virus causes seasonal epidemics and sporadic pandemics resulting in morbidity, mortality, and economic losses worldwide. Understanding how to regulate influenza virus replication is important for developing vaccine and therapeutic strategies. Identifying microRNAs (miRs) that affect host genes used by influenza virus for replication can support an antiviral strategy. In this study, G-protein coupled receptor (GPCR) and ion channel (IC) host genes in human alveolar epithelial (A549) cells used by influenza virus for replication (Orr-Burks et al., 2021) were examined as miR target genes following A/CA/04/09- or B/Yamagata/16/1988 replication. Thirty-three miRs were predicted to target GPCR or IC genes and their miR mimics were evaluated for their ability to decrease influenza virus replication. Paired miR inhibitors were used as an ancillary measure to confirm or not the antiviral effects of a miR mimic. Fifteen miRs lowered influenza virus replication and four miRs were found to reduce replication irrespective of virus strain and type differences. These findings provide evidence for novel miR disease intervention strategies for influenza viruses.


Asunto(s)
Virus de la Influenza A/fisiología , Gripe Humana/metabolismo , Canales Iónicos/metabolismo , MicroARNs/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Replicación Viral , Células A549 , Interacciones Huésped-Patógeno , Humanos , Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/prevención & control , Canales Iónicos/genética , MicroARNs/genética , Receptores Acoplados a Proteínas G/genética
5.
Avian Dis ; 58(2): 279-86, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25055633

RESUMEN

Infectious bronchitis virus (IBV) is a highly contagious coronavirus prevalent in all countries with an extensive poultry industry and continues to cause economic losses. IBV strains of the Ark serotype are highly prevalent in the Southeastern United States despite extensive vaccination. One explanation for this observation is the high genetic variability of IBV. In addition, IBV Ark-type vaccines may induce suboptimal mucosal immune responses, contributing to the prevalence and persistence of the Ark serotype. To test this hypothesis, chickens were ocularly vaccinated with a commercially available live attenuated IBV Ark-Delmarva Poultry Industry vaccine strain and both mucosal and systemic antibody responses were measured. The highest immunoglobulin A (IgA) spot-forming cell (SFC) response was observed in the Harderian glands (HG) and to a lesser extent in the spleen and conjunctiva-associated lymphoid tissues, while a limited IgG SFC response was observed in either the mucosal or systemic immune compartment. Interestingly, the peak IgA SFC response occurred 2 days earlier in spleen than in the head-associated lymphoid tissues despite ocular vaccination. Furthermore, IgA IBV-specific antibody levels significantly increased over controls 3 days earlier in tears and 4 days earlier in plasma than did IgG antibodies. IgA antibody levels were higher than IgG antibody levels throughout the primary response in tears and were similar in magnitude in plasma. In addition, a very early increase in IgA antibodies on day 3 postvaccination was observed in tears; such a response was not observed in plasma. This early increase is consistent with a mucosal T-independent IgA response to IBV. In the secondary response the IBV antibody levels significantly increased over controls starting on day 1 after boosting, and the IgG antibody levels were higher than the IgA antibody levels in both tears and plasma. In summary, ocular vaccination induced higher IgA antibodies in the primary IBV response, while the memory response is dominated by IgG antibodies. Thus, lower mucosal IgA antibody levels are observed upon secondary exposure to IBV, which may contribute to vulnerability of host epithelial cells to infection by IBV and persistence of the Ark serotype.


Asunto(s)
Pollos , Infecciones por Coronavirus/veterinaria , Virus de la Bronquitis Infecciosa/inmunología , Enfermedades de las Aves de Corral/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/metabolismo , Proteínas Aviares/metabolismo , Infecciones por Coronavirus/inmunología , Ensayo de Immunospot Ligado a Enzimas/veterinaria , Inmunidad Humoral , Inmunidad Mucosa , Inmunoglobulina A/metabolismo , Inmunoglobulina G/metabolismo , Tejido Linfoide/inmunología , Organismos Libres de Patógenos Específicos , Bazo/inmunología , Vacunación/veterinaria , Vacunas Atenuadas/inmunología
6.
Viruses ; 16(1)2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275962

RESUMEN

Avian influenza (AI) viruses cause infection in birds and humans. Several H5N1 and H7N9 variants are highly pathogenic avian influenza (HPAI) viruses. H5N1 is a highly infectious bird virus infecting primarily poultry, but unlike other AIs, H5N1 also infects mammals and transmits to humans with a case fatality rate above 40%. Similarly, H7N9 can infect humans, with a case fatality rate of over 40%. Since 1996, there have been several HPAI outbreaks affecting humans, emphasizing the need for safe and effective antivirals. We show that probenecid potently inhibits H5N1 and H7N9 replication in prophylactically or therapeutically treated A549 cells and normal human broncho-epithelial (NHBE) cells, and H5N1 replication in VeroE6 cells and mice.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Ratones , Gripe Aviar/tratamiento farmacológico , Gripe Aviar/prevención & control , Gripe Aviar/epidemiología , Subtipo H7N9 del Virus de la Influenza A/genética , Probenecid , Aves , Mamíferos
7.
bioRxiv ; 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35702147

RESUMEN

Immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines has greatly reduced coronavirus disease 2019 (COVID-19)-related deaths and hospitalizations, but waning immunity and the emergence of variants capable of immune escape indicate the need for novel SARS-CoV-2 vaccines. An intranasal parainfluenza virus 5 (PIV5)-vectored COVID-19 vaccine CVXGA1 has been proven efficacious in animal models and blocks contact transmission of SARS-CoV-2 in ferrets. CVXGA1 vaccine is currently in human clinical trials in the United States. This work investigates the immunogenicity and efficacy of CVXGA1 and other PIV5-vectored vaccines expressing additional antigen SARS-CoV-2 nucleoprotein (N) or SARS-CoV-2 variant spike (S) proteins of beta, delta, gamma, and omicron variants against homologous and heterologous challenges in hamsters. A single intranasal dose of CVXGA1 induces neutralizing antibodies against SARS-CoV-2 WA1 (ancestral), delta variant, and omicron variant and protects against both homologous and heterologous virus challenges. Compared to mRNA COVID-19 vaccine, neutralizing antibody titers induced by CVXGA1 were well-maintained over time. When administered as a boost following two doses of a mRNA COVID-19 vaccine, PIV5-vectored vaccines expressing the S protein from WA1 (CVXGA1), delta, or omicron variants generate higher levels of cross-reactive neutralizing antibodies compared to three doses of a mRNA vaccine. In addition to the S protein, the N protein provides added protection as assessed by the highest body weight gain post-challenge infection. Our data indicates that PIV5-vectored COVID-19 vaccines, such as CVXGA1, can serve as booster vaccines against emerging variants.

8.
Adv Sci (Weinh) ; 9(34): e2202771, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36316224

RESUMEN

Despite the success of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines, there remains a clear need for new classes of preventatives for respiratory viral infections due to vaccine hesitancy, lack of sterilizing immunity, and for at-risk patient populations, including the immunocompromised. While many neutralizing antibodies have been identified, and several approved, to treat COVID-19, systemic delivery, large doses, and high costs have the potential to limit their widespread use, especially in low- and middle-income countries. To use these antibodies more efficiently, an inhalable formulation is developed that allows for the expression of mRNA-encoded, membrane-anchored neutralizing antibodies in the lung to mitigate SARS-CoV-2 infections. First, the ability of mRNA-encoded, membrane-anchored, anti-SARS-CoV-2 antibodies to prevent infections in vitro is demonstrated. Next, it is demonstrated that nebulizer-based delivery of these mRNA-expressed neutralizing antibodies potently abrogates disease in the hamster model. Overall, these results support the use of nebulizer-based mRNA expression of neutralizing antibodies as a new paradigm for mitigating respiratory virus infections.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , ARN Mensajero/genética , Anticuerpos Neutralizantes/uso terapéutico
9.
PLoS One ; 16(10): e0259129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34714852

RESUMEN

Influenza viruses cause respiratory tract infections and substantial health concerns. Infection may result in mild to severe respiratory disease associated with morbidity and some mortality. Several anti-influenza drugs are available, but these agents target viral components and are susceptible to drug resistance. There is a need for new antiviral drug strategies that include repurposing of clinically approved drugs. Drugs that target cellular machinery necessary for influenza virus replication can provide a means for inhibiting influenza virus replication. We used RNA interference screening to identify key host cell genes required for influenza replication, and then FDA-approved drugs that could be repurposed for targeting host genes. We examined the effects of Clopidogrel and Triamterene to inhibit A/WSN/33 (EC50 5.84 uM and 31.48 uM, respectively), A/CA/04/09 (EC50 6.432 uM and 3.32 uM, respectively), and B/Yamagata/16/1988 (EC50 0.28 uM and 0.11 uM, respectively) replication. Clopidogrel and Triamterene provide a druggable approach to influenza treatment across multiple strains and subtypes.


Asunto(s)
Antivirales/farmacología , Clopidogrel/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Triantereno/farmacología , Células A549 , Animales , Perros , Reposicionamiento de Medicamentos , Humanos , Células de Riñón Canino Madin Darby , Replicación Viral/efectos de los fármacos
10.
Vet Microbiol ; 251: 108914, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33181438

RESUMEN

Tracking the genetic diversity and spread of swine influenza viruses (SIVs) in commercial swine farms is central for control and to reduce the potential emergence of SIV reassortants. We analyzed the diversity of SIVs in nasal washes or oral fluids from commercial swine farms in North Carolina using influenza M qRT-PCR and hemagglutinin (HA) and neuraminidase (NA) subtyping. We found a predominance of H1 HAs and N2 NAs in the samples examined. The majority of the H1 HAs could be further classified into gamma and delta subclusters. We also identified HAs of the H1 alpha cluster, and those of human novel pandemic origin. Glycan binding profiles from a representative subset of these viruses revealed broad α2,6 sialylated glycan recognition, though some strains exhibited the ability to bind to α2,3 sialic acid. These data show that SIV surveillance can aid our understanding of viral transmission dynamics and help uncover the diversity at the human-swine interface.


Asunto(s)
Granjas/estadística & datos numéricos , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Orthomyxoviridae/genética , Enfermedades de los Porcinos/epidemiología , Animales , Variación Genética , Hemaglutininas Virales/genética , Humanos , Medio Oeste de Estados Unidos/epidemiología , Neuraminidasa/genética , Orthomyxoviridae/clasificación , Infecciones por Orthomyxoviridae/transmisión , Filogenia , ARN Viral/genética , Virus Reordenados/genética , Sudeste de Estados Unidos/epidemiología , Porcinos , Enfermedades de los Porcinos/virología , Proteínas Virales/genética
11.
Vaccine X ; 3: 100045, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31660537

RESUMEN

BACKGROUND: Rotavirus (RV) is a leading cause of severe gastroenteritis globally and can cause substantial morbidity associated with gastroenteritis in children <5 years of age. Orally administered live-attenuated RV vaccines offer protection against disease but vaccination efforts have been hampered by high manufacturing costs and the need to maintain a cold chain. METHODS: A subset of Vero cell host genes was identified by siRNA that when knocked down increased RV replication and these anti-viral host genes were individually deleted using CRISPR-Cas9. RESULTS: Fully-sequenced gene knockout Vero cell substrates were assessed for increased RV replication and RV vaccine antigen expression compared to wild type Vero cells. The results showed that RV replication and antigen production were logs higher in Vero cells having an EMX2 gene deletion compared to other Vero cell substrates tested. CONCLUSIONS: We used siRNAs to screen for host genes that negatively affected RV replication, then CRISPR-Cas9 gene editing to delete select genes. The gene editing led to the development of enhanced RV vaccine substrates supporting a potential path forward for improving RV vaccine production.

12.
Sci Data ; 4: 170021, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28248921

RESUMEN

Rotavirus is a major cause of severe gastroenteritis among very young children. In developing countries, rotavirus is the major cause of mortality in children under five years old, causing up to 20% of all childhood deaths in countries with high diarrheal disease burden, with more than 90% of these deaths occurring in Africa and Asia. Rotavirus vaccination mimics the first infection without causing illness, thus inducing strong and broad heterotypic immunity against prospective rotavirus infections. Two live vaccines are available, Rotarix and RotaTeq, but vaccination efforts are hampered by high production costs. Here, we present a dataset containing a genome-wide RNA interference (RNAi) screen that identified silencing events that enhanced rotavirus replication. Evaluated against several rotavirus vaccine strains, hits were validated in a Vero vaccine cell line as well as CRISPR/Cas9 generated cells permanently and stably lacking the genes that affect RV replication. Knockout cells were dramatically more permissive to RV replication and permitted an increase in rotavirus replication. These data show a means to improve manufacturing of rotavirus vaccine.


Asunto(s)
Línea Celular , Vacunas contra Rotavirus , Animales , Rotavirus , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/prevención & control
13.
Sci Data ; 4: 170023, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28248924

RESUMEN

MicroRNAs (miRNAs) regulate virus replication through multiple mechanisms. Poliovirus causes a highly debilitating disease and though global efforts to eradicate polio have sharply decreased polio incidence, unfortunately three countries (Afghanistan, Nigeria and Pakistan) remain polio-endemic. We hypothesize that understanding the host factors involved in polio replication will identify novel prophylactic and therapeutic targets against polio and related viruses. In this data set, employing genome wide screens of miRNA mimics and inhibitors, we identified miRNAs which significantly suppressed polio replication. Specifically, miR-134 regulates poliovirus replication via modulation of ras-related nuclear protein (RAN), an important component of the nuclear transport system. MiR-134 also inhibited other Picornaviridae viruses including EV71, a growing concern and a high priority for vaccination in Asian countries like China. These findings demonstrate a novel mechanism for miRNA regulation of poliovirus and other Picornaviridae viruses in host cells, and thereby may provide a novel approach in combating infection and a potential approach for the development of anti-Picornaviridae strategies.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus/genética , MicroARNs , Poliomielitis/genética , Poliovirus , China , Infecciones por Enterovirus/epidemiología , Incidencia , Poliomielitis/epidemiología , Replicación Viral
14.
PLoS One ; 12(11): e0188333, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29176782

RESUMEN

Using genome-wide small interfering RNA (siRNA) screens for poliovirus, influenza A virus and rotavirus, we validated the top 6 gene hits PV, RV or IAV to search for host genes that when knocked-down (KD) enhanced virus permissiveness and replication over wild type Vero cells or HEp-2 cells. The enhanced virus replication was tested for 12 viruses and ranged from 2-fold to >1000-fold. There were variations in virus-specific replication (strain differences) across the cell lines examined. Some host genes (CNTD2, COQ9, GCGR, NDUFA9, NEU2, PYCR1, SEC16G, SVOPL, ZFYVE9, and ZNF205) showed that KD resulted in enhanced virus replication. These findings advance platform-enabling vaccine technology, the creation of diagnostic cells substrates, and are informative about the host mechanisms that affect virus replication in mammalian cells.


Asunto(s)
Mamíferos/metabolismo , Vacunas/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Técnicas de Silenciamiento del Gen , Genes Virales , Genoma , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Vero , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA