Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 149(23): 1812-1829, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38426339

RESUMEN

BACKGROUND: Discovering determinants of cardiomyocyte maturity is critical for deeply understanding the maintenance of differentiated states and potentially reawakening endogenous regenerative programs in adult mammalian hearts as a therapeutic strategy. Forced dedifferentiation paired with oncogene expression is sufficient to drive cardiac regeneration, but elucidation of endogenous developmental regulators of the switch between regenerative and mature cardiomyocyte cell states is necessary for optimal design of regenerative approaches for heart disease. MBNL1 (muscleblind-like 1) regulates fibroblast, thymocyte, and erythroid differentiation and proliferation. Hence, we examined whether MBNL1 promotes and maintains mature cardiomyocyte states while antagonizing cardiomyocyte proliferation. METHODS: MBNL1 gain- and loss-of-function mouse models were studied at several developmental time points and in surgical models of heart regeneration. Multi-omics approaches were combined with biochemical, histological, and in vitro assays to determine the mechanisms through which MBNL1 exerts its effects. RESULTS: MBNL1 is coexpressed with a maturation-association genetic program in the heart and is regulated by the MEIS1/calcineurin signaling axis. Targeted MBNL1 overexpression early in development prematurely transitioned cardiomyocytes to hypertrophic growth, hypoplasia, and dysfunction, whereas loss of MBNL1 function increased cardiomyocyte cell cycle entry and proliferation through altered cell cycle inhibitor transcript stability. Moreover, MBNL1-dependent stabilization of estrogen-related receptor signaling was essential for maintaining cardiomyocyte maturity in adult myocytes. In accordance with these data, modulating MBNL1 dose tuned the temporal window of neonatal cardiac regeneration, where increased MBNL1 expression arrested myocyte proliferation and regeneration and MBNL1 deletion promoted regenerative states with prolonged myocyte proliferation. However, MBNL1 deficiency was insufficient to promote regeneration in the adult heart because of cell cycle checkpoint activation. CONCLUSIONS: Here, MBNL1 was identified as an essential regulator of cardiomyocyte differentiated states, their developmental switch from hyperplastic to hypertrophic growth, and their regenerative potential through controlling an entire maturation program by stabilizing adult myocyte mRNAs during postnatal development and throughout adulthood. Targeting loss of cardiomyocyte maturity and downregulation of cell cycle inhibitors through MBNL1 deletion was not sufficient to promote adult regeneration.


Asunto(s)
Diferenciación Celular , Miocitos Cardíacos , Proteínas de Unión al ARN , Regeneración , Animales , Miocitos Cardíacos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratones , Proliferación Celular , Transducción de Señal , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Proteínas de Unión al ADN
2.
bioRxiv ; 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36993225

RESUMEN

Discovering determinants of cardiomyocyte maturity and the maintenance of differentiated states is critical to both understanding development and potentially reawakening endogenous regenerative programs in adult mammalian hearts as a therapeutic strategy. Here, the RNA binding protein Muscleblind-like 1 (MBNL1) was identified as a critical regulator of cardiomyocyte differentiated states and their regenerative potential through transcriptome-wide control of RNA stability. Targeted MBNL1 overexpression early in development prematurely transitioned cardiomyocytes to hypertrophic growth, hypoplasia, and dysfunction, whereas loss of MBNL1 function increased cardiomyocyte cell cycle entry and proliferation through altered cell cycle inhibitor transcript stability. Moreover, MBNL1-dependent stabilization of the estrogen-related receptor signaling axis was essential for maintaining cardiomyocyte maturity. In accordance with these data, modulating MBNL1 dose tuned the temporal window of cardiac regeneration, where enhanced MBNL1 activity arrested myocyte proliferation, and MBNL1 deletion promoted regenerative states with prolonged myocyte proliferation. Collectively these data suggest MBNL1 acts as a transcriptome-wide switch between regenerative and mature myocyte states postnatally and throughout adulthood.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA