RESUMEN
BACKGROUND: Neoantigens are patient- and tumor-specific peptides that arise from somatic mutations. They stand as promising targets for personalized therapeutic cancer vaccines. The identification process for neoantigens has evolved with the use of next-generation sequencing technologies and bioinformatic tools in tumor genomics. However, in-silico strategies for selecting immunogenic neoantigens still have very low accuracy rates, since they mainly focus on predicting peptide binding to Major Histocompatibility Complex (MHC) molecules, which is key but not the sole determinant for immunogenicity. Moreover, the therapeutic potential of neoantigen-based vaccines may be enhanced using an optimal delivery platform that elicits robust de novo immune responses. METHODS: We developed a novel neoantigen selection pipeline based on existing software combined with a novel prediction method, the Neoantigen Optimization Algorithm (NOAH), which takes into account structural features of the peptide/MHC-I interaction, as well as the interaction between the peptide/MHC-I complex and the TCR, in its prediction strategy. Moreover, to maximize neoantigens' therapeutic potential, neoantigen-based vaccines should be manufactured in an optimal delivery platform that elicits robust de novo immune responses and bypasses central and peripheral tolerance. RESULTS: We generated a highly immunogenic vaccine platform based on engineered HIV-1 Gag-based Virus-Like Particles (VLPs) expressing a high copy number of each in silico selected neoantigen. We tested different neoantigen-loaded VLPs (neoVLPs) in a B16-F10 melanoma mouse model to evaluate their capability to generate new immunogenic specificities. NeoVLPs were used in in vivo immunogenicity and tumor challenge experiments. CONCLUSIONS: Our results indicate the relevance of incorporating other immunogenic determinants beyond the binding of neoantigens to MHC-I. Thus, neoVLPs loaded with neoantigens enhancing the interaction with the TCR can promote the generation of de novo antitumor-specific immune responses, resulting in a delay in tumor growth. Vaccination with the neoVLP platform is a robust alternative to current therapeutic vaccine approaches and a promising candidate for future personalized immunotherapy.
Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Vacunas , Humanos , Animales , Ratones , Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Péptidos , Receptores de Antígenos de Linfocitos T/metabolismo , Inmunoterapia/métodosRESUMEN
Antineoplastic therapies for prostate cancer (PCa) have traditionally centered around the androgen receptor (AR) pathway, which has demonstrated a significant role in oncogenesis. Nevertheless, it is becoming progressively apparent that therapeutic strategies must diversify their focus due to the emergence of resistance mechanisms that the tumor employs when subjected to monomolecular treatments. This review illustrates how the dysregulation of the lipid metabolic pathway constitutes a survival strategy adopted by tumors to evade eradication efforts. Integrating this aspect into oncological management could prove valuable in combating PCa.
Asunto(s)
Antineoplásicos , Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/patología , Ácido Mevalónico , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéuticoRESUMEN
Neoantigens are tumor-specific antigens that are mostly particular for each patient. Since the immune system is able to mount a specific immune response against these neoantigens, they are a promising tool for the development of therapeutic personalized cancer vaccines. Neoantigens must be presented to T cells by antigen presenting cells (APC) in the context of MHC-I or MHC-II molecules. Therefore, the strategy of vaccine delivery may have a major impact on the magnitude and quality of T cell responses. Neoantigen-based vaccines are frequently administered as a pool of individual synthetic peptides that induce mainly CD4+ T cell responses. MHC-I-mediated presentation and the elicitation of CD8+ T cell responses may be improved using DNA or RNA sequences that code for a unique long polypeptide that concatenates the different neoantigens spaced by linker sequences. When administered this way, the selection of the spacer between neoantigens is of special interest, as it might influence the processing and presentation of the right peptides by APCs. Here, we evaluate the impact of such linker regions on the MHC-I-dependent antigen presentation using an in vitro assay that assesses the MHC-I presentation of SIINFEKL, a H-2 Kb-restricted OVA peptide. Our results show that spacers used to generate epitope concatenates have a large impact on the efficiency of neoantigen processing and presentation by MHC-I molecules; in contrast, the peptide position and the flanking regions have a minimal impact. Moreover, linkers based on alanine residues promote a more efficient peptide presentation than the commonly used GGGS linker.
Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I , Antígenos de Neoplasias , Péptidos , InmunoterapiaRESUMEN
Feline leukemia virus (FeLV) is one of the most prevalent infectious diseases in domestic cats. Although different commercial vaccines are available, none of them provides full protection. Thus, efforts to design a more efficient vaccine are needed. Our group has successfully engineered HIV-1 Gag-based VLPs that induce a potent and functional immune response against the HIV-1 transmembrane protein gp41. Here, we propose to use this concept to generate FeLV-Gag-based VLPs as a novel vaccine strategy against this retrovirus. By analogy to our HIV-1 platform, a fragment of the FeLV transmembrane p15E protein was exposed on FeLV-Gag-based VLPs. After optimization of Gag sequences, the immunogenicity of the selected candidates was evaluated in C57BL/6 and BALB/c mice, showing strong cellular and humoral responses to Gag but failing to generate anti-p15E antibodies. Altogether, this study not only tests the versatility of the enveloped VLP-based vaccine platform but also sheds light on FeLV vaccine research.
Asunto(s)
VIH-1 , Vacunas de Partículas Similares a Virus , Ratones , Animales , Gatos , Virus de la Leucemia Felina , Ratones Endogámicos C57BL , Retroviridae , Proteína gp41 de Envoltorio del VIHRESUMEN
AIMS: This trial aimed to evaluate the safety and efficiency of a common and simplified protocol for the surveillance of cardiac implantable electronic devices based on remote monitoring (RM) in patients with pacemakers (PMs) and implantable cardiac defibrillators (ICDs) for at least 24 months. METHODS AND RESULTS: The RM-ALONE is a multicentre prospective trial that randomly assigned 445 patients in two groups, both followed by RM: the home monitoring-only (HMo) based on RM + remote interrogations (RIs) every 6 months and the HM + IO that adds in-office evaluations every 6 months to RM. Four hundred and forty-five patients were enrolled in the study, 294 PMs and 151 ICDs recipients. In the HMo group, 20% of patients experienced ≥1 major adverse cardiac event (MACE) vs. 19.5% in HM + IO group (P = 0.006 for non-inferiority). The proportion of patients with a PM/ICD who experienced ≥1 MACE was 15.2/29.3% in HMo group and 16.1/26.3% in HM + IO group (hazard ratio 0.95/1.15, 95% confidence interval 0.53-1.70/0.62-2.10). There were 789 in-office evaluations (136 in the HMo and 653 in the HM + IO; P < 0.001). There was a 79.2% reduction of in-office evaluations with no significant differences in unscheduled visits between groups: 122 (54.5%) in HMo and 101 (45.3%) in HM + IO; P = 0.15. The time a physician/nurse spent per patient/follow-up was significantly reduced in the HMo group: 4/5 min (0-30)/(1-30) vs. 10/10 min (0-40)/(1-40) in HM + IO (P < 0.0001). CONCLUSION: The RM-ALONE protocol common for ICD and PM surveillance, consisting of RM + RI every 6 months has proven safe and efficient in reducing hospital visits and staff workload.
Asunto(s)
Desfibriladores Implantables/efectos adversos , Servicios de Atención de Salud a Domicilio , Monitoreo Fisiológico/métodos , Marcapaso Artificial/efectos adversos , Telemedicina/métodos , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/mortalidad , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Carga de Trabajo/estadística & datos numéricos , Adulto JovenRESUMEN
BACKGROUND: In order to ensure sustainability of aquaculture production of carnivourous fish species such as the gilthead seabream (Sparus aurata, L.), the impact of the inclusion of alternative protein sources to fishmeal, including plants, has been assessed. With the aim of evaluating long-term effects of vegetable diets on growth and intestinal status of the on-growing gilthead seabream (initial weight = 129 g), three experimental diets were tested: a strict plant protein-based diet (VM), a fishmeal based diet (FM) and a plant protein-based diet with 15% of marine ingredients (squid and krill meal) alternative to fishmeal (VM+). Intestines were sampled after 154 days. Besides studying growth parameters and survival, the gene expression related to inflammatory response, immune system, epithelia integrity and digestive process was analysed in the foregut and hindgut sections, as well as different histological parameters in the foregut. RESULTS: There were no differences in growth performance (p = 0.2703) and feed utilization (p = 0.1536), although a greater fish mortality was recorded in the VM group (p = 0.0141). In addition, this group reported a lower expression in genes related to pro-inflammatory response, as Interleukine-1ß (il1ß, p = 0.0415), Interleukine-6 (il6, p = 0.0347) and cyclooxigenase-2 (cox2, p = 0.0014), immune-related genes as immunoglobulin M (igm, p = 0.0002) or bacterial defence genes as alkaline phosphatase (alp, p = 0.0069). In contrast, the VM+ group yielded similar survival rate to FM (p = 0.0141) and the gene expression patterns indicated a greater induction of the inflammatory and immune markers (il1ß, cox2 and igm). However, major histological changes in gut were not detected. CONCLUSIONS: Using plants as the unique source of protein on a long term basis, replacing fishmeal in aqua feeds for gilthead seabream, may have been the reason of a decrease in the level of different pro-inflammatory mediators (il1 ß, il6 and cox2) and immune-related molecules (igm and alp), which reflects a possible lack of local immune response at the intestinal mucosa, explaining the higher mortality observed. Krill and squid meal inclusion in vegetable diets, even at low concentrations, provided an improvement in nutrition and survival parameters compared to strictly plant protein based diets as VM, maybe explained by the maintenance of an effective immune response throughout the assay.
Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Intestinos/inmunología , Proteínas de Plantas/genética , Dorada/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Acuicultura , Decapodiformes , Euphausiacea , Peces , Perfilación de la Expresión Génica , Proteínas de Plantas/metabolismo , Dorada/inmunologíaRESUMEN
This paper reviews the potential of stilbenoids as nutraceuticals. Stilbenoid compounds in wine are considered key factors in health-promoting benefits. Resveratrol and resveratrol-related compounds are found in a large diversity of vegetal products. The stilbene composition varies from wine to wine and from one season to another. Therefore, the article also reviews how food science and technology and wine industry may help in providing wines and/or food supplements with efficacious concentrations of stilbenes. The review also presents results from clinical trials and those derived from genomic/transcriptomic studies. The most studied stilbenoid, resveratrol, is a very safe compound. On the other hand, the potential benefits of stilbene intake are multiple and are apparently due to downregulation more than upregulation of gene expression. The field may take advantage from identifying the mechanism of action(s) and from providing useful data to show evidence for specific health benefits in a given tissue or for combating a given disease.
RESUMEN
The search for new sustainable aquafeeds for the species with greater economic importance, such as the gilthead sea bream in Europe, is one of the main challenges in the aquaculture sector. The present work tested fishmeal replacement by a mixture of plant meals at different levels, as well as the use of marine by-products with attractant properties and high-quality protein in high plant protein diets. In order to do that, effects on growth and biometric parameters, digestibility, amino acid retention, excreted ammonia and proteases and amylase activity were assessed, using six different diets: FM100 (100% of protein provided by fishmeal), FM50 (50% of replacement), FM25 (75% of replacement) and FM0 (100% of replacement), but also FM25+ (75% of replacement and 15% of squid and krill meal inclusion), and FM0+ (100% of replacement and 15% of squid and krill meal inclusion). In group FM0, a clear impact of dietary changes was observed on growth, survival and ammonia excretion. Amino acid retention in group FM0+ was also significantly affected, which can be explained by the limited content of certain amino acids in this diet. On the other hand, no significant differences were observed in most biometric parameters or in enzyme activity. In conclusion, complete fishmeal replacement can be achieved by using a mixture of plant-based sources, but supplementation with complementary marine ingredients can prevent detrimental effects on growth, survival, nutritional parameters and protein metabolism.
Asunto(s)
Aminoácidos/metabolismo , Amoníaco/metabolismo , Alimentación Animal/análisis , Proteínas en la Dieta/metabolismo , Digestión/efectos de los fármacos , Dorada/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Proteínas en la Dieta/administración & dosificación , Relación Dosis-Respuesta a Droga , Proteínas de Plantas/administración & dosificación , Proteínas de Plantas/química , Distribución Aleatoria , Dorada/crecimiento & desarrolloRESUMEN
Six Gram-negative, non-motile, non-spore-forming, non-pigmented, oxidase- and catalase-positive bacterial strains were deposited in 1972, in the Collection of the Institut Pasteur (CIP), Paris, France. The strains, previously identified as members of the genus Moraxella on the basis of their phenotypic and biochemical characteristics, were placed within the genus Psychrobacter based on the results from comparative 16S rRNA gene sequence studies. Their closest phylogenetic relatives were Psychrobacter sanguinis CIP 110993T, Psychrobacter phenylpyruvicus CIP 82.27T and Psychrobacter lutiphocae CIP 110018T. The DNA G+C contents were between 42.1 and 42.7 mol%. The predominant fatty acids were C18â:â1ω9c, C16â:â0, C12â:â0 3-OH, and C18â:â0. Average nucleotide identity between the six strains and their closest phylogenetic relatives, as well as their phenotypic characteristics, supported the assignment of these strains to two novel species within the genus Psychrobacter. The proposed names for these strains are Psychrobacter pasteurii sp. nov., for which the type strain is A1019T (=CIP 110853T=CECT 9184T), and Psychrobacter piechaudii sp. nov., for which the type strain is 1232T (=CIP110854T=CECT 9185T).
Asunto(s)
Filogenia , Psychrobacter/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , ADN Ribosómico/genética , Ácidos Grasos/química , Francia , Psychrobacter/genética , Psychrobacter/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
The effect of partial or total dietary substitution of fishmeal (FM) by vegetal protein sources on growth and feed efficiency was carried out in on-growing gilthead sea bream (mean initial weight 131 g). The Control diet (FM 100) contained FM as the primary protein source, while in Diets FM 25 and FM 0 the FM protein was replaced at 75% and 100%, respectively, by a vegetable protein mixture consisting of wheat gluten, soybean meal, rapeseed meal and crystalline amino acids. Diets FM 25 and FM 0 also contained krill meal at 47 g/kg in order to improve palatability. At the end of the trial (after 158 d), fish survival was above 90%. Final weight and the specific growth rate were statistically lower in fish fed the Control diet (361 g and 0.64%/d), compared with 390-396 g and 0.69-0.70%/d after feeding vegetal diets. No significant differences were found regarding feed intake and feed conversion ratio. The digestibility of protein and amino acids (determined with chromium oxide as indicator) was similar in all diets. The blood parameters were not significantly affected by treatments. The activity of trypsin and pepsin was significantly reduced after feeding Diet FM 0. In the distal intestine, the villi length in fish fed Diet FM 25 was significantly longer and the intestine of the fish fed the FM 100 diet showed a smaller number of goblet cells. In conclusion, a total FM substitution by a vegetal mix supplemented with synthetic amino acids in on-growing sea bream is feasible.
Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Proteínas de Plantas/metabolismo , Dorada , Aminoácidos/química , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Acuicultura , Peso Corporal , Digestión , Productos PesquerosRESUMEN
OBJECTIVE: To review the chemistry, pharmacology, microbiology, pharmacokinetics, pharmacodynamics, clinical efficacy, safety, dosing, and administration of ceftazidime/avibactam (CAZ/AVI). DATA SOURCES: A search of PubMed using the terms "ceftazidime," "avibactam," "NXL104," and "AVE1330A" was performed. The manufacturer's website was also reviewed to further identify relevant information. STUDY SELECTION: All English-language articles from 2004 to May 2015 appearing in these searches were reviewed for relevance to this paper. In addition, their bibliographies were reviewed to identify any articles not identified in the searches. DATA SYNTHESIS: CAZ/AVI is a new cephalosporin ß-lactamase inhibitor combination with a spectrum of activity targeted against Gram-negative organisms including Enterobacteriaceae and Pseudomonas aeruginosa. The dosing regimen is 2.5 g every eight hours administered via IV infusion over two hours for 5 to 14 days. The dosing regimen should be adjusted based on renal function. A phase II trial has demonstrated that clinical cure rates with CAZ/AVI plus metronidazole are comparable to those with meropenem in the treatment of adults with complicated intra-abdominal infections. Another phase II clinical trial has demonstrated that clinical cure rates with CAZ/AVI are comparable to those with imipenem/cilastatin for the treatment of adults with complicated urinary tract infections (cUTIs). CAZ/AVI has a side effect profile similar to that of cephalosporins and carbapenems. CONCLUSION: CAZ/AVI has a favorable efficacy and safety profile in the treatment of adults with complicated intra-abdominal infections or cUTIs. Further research is needed to refine its role, particularly for the treatment of multi-drug-resistant Gram-negative infections.
Asunto(s)
Compuestos de Azabiciclo/uso terapéutico , Ceftazidima/uso terapéutico , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Inhibidores de beta-Lactamasas/uso terapéutico , Adulto , Antibacterianos/administración & dosificación , Antibacterianos/efectos adversos , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo/administración & dosificación , Compuestos de Azabiciclo/efectos adversos , Ceftazidima/administración & dosificación , Ceftazidima/efectos adversos , Combinación de Medicamentos , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Infecciones Intraabdominales/tratamiento farmacológico , Infecciones Intraabdominales/microbiología , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Inhibidores de beta-Lactamasas/administración & dosificación , Inhibidores de beta-Lactamasas/efectos adversosRESUMEN
The envelope glycoprotein (Env) of retroviruses, such as the Feline leukemia virus (FeLV), is the main target of neutralizing humoral response, and therefore, a promising vaccine candidate, despite its reported poor immunogenicity. The incorporation of mutations that stabilize analogous proteins from other viruses in their prefusion conformation (e.g., HIV Env, SARS-CoV-2 S, or RSV F glycoproteins) has improved their capability to induce neutralizing protective immune responses. Therefore, we have stabilized the FeLV Env protein following a strategy based on the incorporation of a disulfide bond and an Ile/Pro mutation (SOSIP) previously used to generate soluble HIV Env trimers. We have characterized this SOSIP-FeLV Env in its soluble form and as a transmembrane protein present at high density on the surface of FeLV Gag-based VLPs. Furthermore, we have tested its immunogenicity in DNA-immunization assays in C57BL/6 mice. Low anti-FeLV Env responses were detected in SOSIP-FeLV soluble protein-immunized animals; however, unexpectedly no responses were detected in the animals immunized with SOSIP-FeLV Gag-based VLPs. In contrast, high humoral response against FeLV Gag was observed in the animals immunized with control Gag VLPs lacking SOSIP-FeLV Env, while this response was significantly impaired when the VLPs incorporated SOSIP-FeLV Env. Our data suggest that FeLV Env can be stabilized as a soluble protein and can be expressed in high-density VLPs. However, when formulated as a DNA vaccine, SOSIP-FeLV Env remains poorly immunogenic, a limitation that must be overcome to develop an effective FeLV vaccine.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Virus de la Leucemia Felina , Ratones Endogámicos C57BL , Proteínas del Envoltorio Viral , Animales , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/genética , Virus de la Leucemia Felina/inmunología , Virus de la Leucemia Felina/genética , Productos del Gen gag/inmunología , Productos del Gen gag/genética , Femenino , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/administración & dosificación , Humanos , Gatos , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/administración & dosificación , Inmunogenicidad VacunalRESUMEN
Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) vaccines have been long overdue. Structure-based vaccine design created a new momentum in the last decade, and the first RSV vaccines have finally been approved in older adults and pregnant individuals. These vaccines are based on recombinant stabilized pre-fusion F glycoproteins administered as soluble proteins. Multimeric antigenic display could markedly improve immunogenicity and should be evaluated in the next generations of vaccines. Here we tested a new virus like particles-based vaccine platform which utilizes the direct fusion of an immunogen of interest to the structural human immunodeficient virus (HIV) protein Gag to increase its surface density and immunogenicity. We compared, in mice, the immunogenicity of RSV-F or hMPV-F based immunogens delivered either as soluble proteins or displayed on the surface of our VLPs. VLP associated F-proteins showed better immunogenicity and induced superior neutralizing responses. Moreover, when combining both VLP associated and soluble immunogens in a heterologous regimen, VLP-associated immunogens provided added benefits when administered as the prime immunization.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Metapneumovirus , Ratones Endogámicos BALB C , Vacunas de Partículas Similares a Virus , Proteínas Virales de Fusión , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Ratones , Metapneumovirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Femenino , Proteínas Virales de Fusión/inmunología , Proteínas Virales de Fusión/genética , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Virus Sincitial Respiratorio Humano/inmunología , Inmunogenicidad Vacunal , Humanos , Vacunas contra Virus Sincitial Respiratorio/inmunología , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/genética , Infecciones por Virus Sincitial Respiratorio/prevención & control , Infecciones por Virus Sincitial Respiratorio/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificaciónRESUMEN
Safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are crucial to fight against the coronavirus disease 2019 pandemic. Most vaccines are based on a mutated version of the Spike glycoprotein [K986P/V987P (S-2P)] with improved stability, yield and immunogenicity. However, S-2P is still produced at low levels. Here, we describe the V987H mutation that increases by two-fold the production of the recombinant Spike and the exposure of the receptor binding domain (RBD). S-V987H immunogenicity is similar to S-2P in mice and golden Syrian hamsters (GSH), and superior to a monomeric RBD. S-V987H immunization confer full protection against severe disease in K18-hACE2 mice and GSH upon SARS-CoV-2 challenge (D614G or B.1.351 variants). Furthermore, S-V987H immunized K18-hACE2 mice show a faster tissue viral clearance than RBD- or S-2P-vaccinated animals challenged with D614G, B.1.351 or Omicron BQ1.1 variants. Thus, S-V987H protein might be considered for future SARS-CoV-2 vaccines development.
Asunto(s)
COVID-19 , Melfalán , SARS-CoV-2 , gammaglobulinas , Cricetinae , Animales , Humanos , Ratones , Mesocricetus , Vacunas contra la COVID-19 , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus/genética , Inmunización , Glicoproteínas , Anticuerpos Neutralizantes , Anticuerpos AntiviralesRESUMEN
The elicitation of cross-variant neutralizing antibodies against SARS-CoV-2 represents a major goal for current COVID-19 vaccine strategies. Additionally, natural infection may also contribute to broaden neutralizing responses. To assess the contribution of vaccines and natural infection, we cross-sectionally analyzed plasma neutralization titers of six groups of individuals, organized according to the number of vaccines they received and their SARS-CoV-2 infection history. Two doses of vaccine had a limited capacity to generate cross-neutralizing antibodies against Omicron variants of concern (VOCs) in uninfected individuals, but efficiently synergized with previous natural immunization in convalescent individuals. In contrast, booster dose had a critical impact on broadening the cross-neutralizing response in uninfected individuals, to level similar to hybrid immunity, while still improving cross-neutralizing responses in convalescent individuals. Omicron breakthrough infection improved cross-neutralization of Omicron subvariants in non-previously infected vaccinated individuals. Therefore, ancestral Spike-based immunization, via infection or vaccination, contributes to broaden SARS-CoV-2 humoral immunity.
RESUMEN
Antigen display on the surface of Virus-Like Particles (VLPs) improves immunogenicity compared to soluble proteins. We hypothesised that immune responses can be further improved by increasing the antigen density on the surface of VLPs. In this work, we report an HIV-1 Gag-based VLP platform engineered to maximise the presence of antigen on the VLP surface. An HIV-1 gp41-derived protein (Min), including the C-terminal part of gp41 and the transmembrane domain, was fused to HIV-1 Gag. This resulted in high-density MinGag-VLPs. These VLPs demonstrated to be highly immunogenic in animal models using either a homologous (VLP) or heterologous (DNA/VLP) vaccination regimen, with the latter yielding 10-fold higher anti-Gag and anti-Min antibody titres. Despite these strong humoral responses, immunisation with MinGag-VLPs did not induce neutralising antibodies. Nevertheless, antibodies were predominantly of an IgG2b/IgG2c profile and could efficiently bind CD16-2. Furthermore, we demonstrated that MinGag-VLP vaccination could mediate a functional effect and halt the progression of a Min-expressing tumour cell line in an in vivo mouse model.
RESUMEN
Most COVID-19 vaccines are based on the SARS-CoV-2 Spike glycoprotein (S) or their subunits. However, S shows some structural instability that limits its immunogenicity and production, hampering the development of recombinant S-based vaccines. The introduction of the K986P and V987P (S-2P) mutations increases the production and immunogenicity of the recombinant S trimer, suggesting that these two parameters are related. Nevertheless, S-2P still shows some molecular instability and it is produced with low yield. Here we described a novel set of mutations identified by molecular modeling and located in the S2 region of the S-2P that increase its production up to five-fold. Besides their immunogenicity, the efficacy of two representative S-2P-based mutants, S-29 and S-21, protecting from a heterologous SARS-CoV-2 Beta variant challenge was assayed in K18-hACE2 mice (an animal model of severe SARS-CoV-2 disease) and golden Syrian hamsters (GSH) (a moderate disease model). S-21 induced higher level of WH1 and Delta variants neutralizing antibodies than S-2P in K18-hACE2 mice three days after challenge. Viral load in nasal turbinate and oropharyngeal samples were reduced in S-21 and S-29 vaccinated mice. Despite that, only the S-29 protein protected 100% of K18-hACE2 mice from severe disease. When GSH were analyzed, all immunized animals were protected from disease development irrespectively of the immunogen they received. Therefore, the higher yield of S-29, as well as its improved immunogenicity and efficacy protecting from the highly pathogenic SARS-CoV-2 Beta variant, pinpoint the S-29 mutant as an alternative to the S-2P protein for future SARS-CoV-2 vaccine development.
Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , Ratones , SARS-CoV-2/genética , Mesocricetus , COVID-19/prevención & control , Vacunas contra la COVID-19RESUMEN
Current COVID-19 vaccines have been associated with a decline in infection rates, prevention of severe disease, and a decrease in mortality rates. However, SARS-CoV-2 variants are continuously evolving, and development of new accessible COVID-19 vaccines is essential to mitigate the pandemic. Here, we present data on preclinical studies in mice of a receptor-binding domain (RBD)-based recombinant protein vaccine (PHH-1V) consisting of an RBD fusion heterodimer comprising the B.1.351 and B.1.1.7 SARS-CoV-2 variants formulated in SQBA adjuvant, an oil-in-water emulsion. A prime-boost immunisation with PHH-1V in BALB/c and K18-hACE2 mice induced a CD4+ and CD8+ T cell response and RBD-binding antibodies with neutralizing activity against several variants, and also showed a good tolerability profile. Significantly, RBD fusion heterodimer vaccination conferred 100% efficacy, preventing mortality in SARS-CoV-2 infected K18-hACE2 mice, but also reducing Beta, Delta and Omicron infection in lower respiratory airways. These findings demonstrate the feasibility of this recombinant vaccine strategy.
RESUMEN
The understanding of HIV-1 pathogenesis and clinical progression is incomplete due to the variable contribution of host, immune, and viral factors. The involvement of viral factors has been investigated in extreme clinical phenotypes from rapid progressors to long-term non-progressors (LTNPs). Among HIV-1 proteins, the envelope glycoprotein complex (Env) has been concentrated on in many studies for its important role in the immune response and in the first steps of viral replication. In this study, we analyzed the contribution of 41 Envs from 24 patients with different clinical progression rates and viral loads (VLs), LTNP-Elite Controllers (LTNP-ECs); Viremic LTNPs (vLTNPs), and non-controller individuals contemporary to LTNPs or recent, named Old and Modern progressors. We studied the Env expression, the fusion and cell-to-cell transfer capacities, as well as viral infectivity. The sequence and phylogenetic analysis of Envs were also performed. In every functional characteristic, the Envs from subjects with viral control (LTNP-ECs and vLTNPs) showed significant lower performance compared to those from the progressor individuals (Old and Modern). Regarding sequence analysis, the variable loops of the gp120 subunit of the Env (i.e., V2, V4, and mainly V5) of the progressor individuals showed longer and more glycosylated sequences than controller subjects. Therefore, HIV-1 Envs from virus of patients presenting viremic control and the non-progressor clinical phenotype showed poor viral functions and shorter sequences, whereas functional Envs were associated with virus of patients lacking virological control and with progressor clinical phenotypes. These correlations support the role of Env genotypic and phenotypic characteristics in the in vivo HIV-1 infection and pathogenesis.
RESUMEN
To understand the determinants of long-term immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the concurrent impact of vaccination and emerging variants, we follow a prospective cohort of 332 patients with coronavirus disease 2019 (COVID-19) over more than a year after symptom onset. We evaluate plasma-neutralizing activity using HIV-based pseudoviruses expressing the spike of different SARS-CoV-2 variants and analyze them longitudinally using mixed-effects models. Long-term neutralizing activity is stable beyond 1 year after infection in mild/asymptomatic and hospitalized participants. However, longitudinal models suggest that hospitalized individuals generate both short- and long-lived memory B cells, while the responses of non-hospitalized individuals are dominated by long-lived B cells. In both groups, vaccination boosts responses to natural infection. Long-term (>300 days from infection) responses in unvaccinated participants show a reduced efficacy against beta, but not alpha nor delta, variants. Multivariate analysis identifies the severity of primary infection as an independent determinant of higher magnitude and lower relative cross-neutralization activity of long-term neutralizing responses.