Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 195(4): 2843-2859, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38478427

RESUMEN

4-Coumaroyl-CoA ligase (4CL) is a key enzyme in the phenylpropanoid pathway, which is involved in the biosynthesis of various specialized metabolites such as flavonoids, coumarins, lignans, and lignin. Plants have several 4CLs showing divergence in sequence: Class I 4CLs involved in lignin metabolism, Class II 4CLs associated with flavonoid metabolism, and atypical 4CLs and 4CL-like proteins of unknown function. Shikonin, a Boraginaceae-specific specialized metabolite in red gromwell (Lithospermum erythrorhizon), is biosynthesized from p-hydroxybenzoic acid, and the involvement of 4CL in its biosynthesis has long been debated. In this study, we demonstrated the requirement of 4CL for shikonin biosynthesis using a 4CL-specific inhibitor. In silico analysis of the L. erythrorhizon genome revealed the presence of at least 8 4CL genes, among which the expression of 3 (Le4CL3, Le4CL4, and Le4CL5) showed a positive association with shikonin production. Phylogenetic analysis indicated that Le4CL5 belongs to Class I 4CLs, while Le4CL3 and Le4CL4 belong to clades that are distant from Class I and Class II. Interestingly, both Le4CL3 and Le4CL4 have peroxisome targeting signal 1 in their C-terminal region, and subcellular localization analysis revealed that both localize to the peroxisome. We targeted each of the 3 Le4CL genes by CRISPR/Cas9-mediated mutagenesis and observed remarkably lower shikonin production in Le4CL3-ge and Le4CL4-ge genome-edited lines compared with the vector control. We, therefore, conclude that peroxisomal Le4CL3 and Le4CL4 are responsible for shikonin production and propose a model for metabolite-specific 4CL distribution in L. erythrorhizon.


Asunto(s)
Coenzima A Ligasas , Lithospermum , Naftoquinonas , Peroxisomas , Naftoquinonas/metabolismo , Lithospermum/genética , Lithospermum/metabolismo , Peroxisomas/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Filogenia
2.
Plant Cell Physiol ; 65(5): 770-780, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38424724

RESUMEN

Sulfur (S) is an essential macronutrient for plant growth and metabolism. SULTR2;1 is a low-affinity sulfate transporter facilitating the long-distance transport of sulfate in Arabidopsis. The physiological function of SULTR2;1 in the plant life cycle still needs to be determined. Therefore, we analyzed the sulfate transport, S-containing metabolite accumulation and plant growth using Arabidopsis SULTR2;1 disruption lines, sultr2;1-1 and sultr2;1-2, from seedling to mature growth stages to clarify the metabolic and physiological roles of SULTR2;1. We observed that sulfate distribution to the stems was affected in sultr2;1 mutants, resulting in decreased levels of sulfate, cysteine, glutathione (GSH) and total S in the stems, flowers and siliques; however, the GSH levels increased in the rosette leaves. This suggested the essential role of SULTR2;1 in sulfate transport from rosette leaves to the primary stem. In addition, sultr2;1 mutants unexpectedly bolted earlier than the wild-type without affecting the plant biomass. Correlation between GSH levels in rosette leaves and the bolting timing suggested that the rosette leaf GSH levels or limited sulfate transport to the early stem can trigger bolting. Overall, this study demonstrated the critical roles of SULTR2;1 in maintaining the S metabolite levels in the aerial part and transitioning from the vegetative to the reproductive growth phase.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Glutatión , Hojas de la Planta , Tallos de la Planta , Sulfatos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Sulfatos/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Tallos de la Planta/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Glutatión/metabolismo , Proteínas de Transporte de Anión/metabolismo , Proteínas de Transporte de Anión/genética , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Transporte Biológico , Azufre/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo
3.
Microbiol Res ; 283: 127695, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554651

RESUMEN

Cap expansion in agaricoid mushroom species is an important event for sexual reproduction because meiosis occurs in basidia under the cap, and basidiospores can be released by opening the cap. However, molecular mechanisms underlying cap expansion in basidiomycetes remain poorly understood. We aimed to elucidate the molecular mechanisms of cap expansion in basidiomycetes by analyzing the unique cap-expansionless UV mutant #13 (exp2-1) in Coprinopsis cinerea. Linkage analysis and consequent genome sequence analysis revealed that the gene responsible for the mutant phenotypes encodes a putative transcription factor with two C2H2 zinc finger motifs. The mutant that was genome-edited to lack exp2 exhibited an expansionless phenotype. Some of the genes encoding cell wall degradation-related enzymes showed decreased expression during cap expansion and autolysis in the exp2 UV and genome-edited mutant. The exp2 gene is widely conserved in Agaricomycetes, suggesting that Exp2 homologs regulate fruiting body maturation in Agaricomycetes, especially cap expansion in Agaricoid-type mushroom-forming fungi. Therefore, exp2 homologs could be a target for mushroom breeding to maintain shape after harvest for some cultivating mushrooms, presenting a promising avenue for further research in breeding techniques.


Asunto(s)
Agaricales , Basidiomycota , Cuerpos Fructíferos de los Hongos/genética , Agaricales/genética , Dedos de Zinc/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA