Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Acc Chem Res ; 57(16): 2245-2254, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39105728

RESUMEN

ConspectusLight is ubiquitously available to probe the structure and dynamics of biomolecules and biological tissues. Generally, this cannot be done directly with visible light, because of the absence of absorption by those biomolecules. This problem can be overcome by incorporating organic molecules (chromophores) that show an optical response in the vicinity of those biomolecules. Since those optical properties are strongly dependent on the chromophore's environment, time-resolved spectroscopic studies can provide a wealth of information on biosystems at the molecular scale in a nondestructive way. In this work, we give an overview on the multiscale computational strategy developed by us in the last eight years and prove that theoretical studies and simulations are needed to explain, guide, and predict observations in fluorescence experiments. As we challenge the accepted views on existing probes, we discover unexplored abilities that can discriminate surrounding lipid bilayers and their temperature-dependent as well as solvent-dependent properties. We focus on three archetypal chromophores: diphenylhexatriene (DPH), Laurdan, and azobenzene. Our method shows that conformational changes should not be neglected for the prototype rod-shaped molecule DPH. They determine its position and orientation in a liquid-ordered (Lo) sphingomyelin/cholesterol (SM/Chol) bilayer and are responsible for a strong differentiation of its absorption spectra and fluorescence decay times in dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) membranes, which are at room temperature in liquid-disordered (Ld) and solid-gel (So) phases, respectively. Thanks to its pronounced first excited state dipole moment, Laurdan has long been known as a solvatochromic probe. Since this molecule has however two conformers, we prove that they exhibit different properties in different lipid membrane phases. We see that the two conformers are only blocked in one phase but not in another. Supported by fluorescence anisotropy decay simulations, Laurdan can therefore be regarded as a molecular rotor. Finally, the conformational versatility of azobenzene in saturated Ld lipid bilayers is simulated, along with its photoisomerization pathways. By means of nonadiabatic QM/MM surface hopping analyses (QM/MM-SH), a dual mechanism is found with a torsional mechanism and a slow conversion for trans-to-cis. For cis-to-trans, simulations show a much higher quantum yield and a so-called "pedal-like" mechanism. The differences are related to the different potential energy surfaces as well as the interactions with the surrounding alkyl chains. When tails of increased length are attached to this probe, cis is pushed toward the polar surface, while trans is pulled toward the center of the membrane.


Asunto(s)
Compuestos Azo , Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Compuestos Azo/química , Difenilhexatrieno/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Lauratos/química , Simulación de Dinámica Molecular
2.
Langmuir ; 34(30): 9072-9084, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29983063

RESUMEN

By reverting to spectroscopy, changes in the biological environment of a fluorescent probe can be monitored and the presence of various phases of the surrounding lipid bilayer membranes can be detected. However, it is currently not always clear in which phase the probe resides. The well-known orange 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbo-cyanine perchlorate (DiI-C18(5)) fluorophore, for instance, and the new, blue BODIPY (4,4-difluoro-4-bora-3 a,4 a-diaza- s-indacene) derivative were experimentally seen to target and highlight identical parts of giant unilamellar vesicles of various compositions, comprising mixtures of dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM), and cholesterol (Chol). However, it was not clear which of the coexisting membrane phases were visualized (Bacalum et al., Langmuir. 2016, 32, 3495). The present study addresses this issue by utilizing large-scale molecular dynamics simulations and the z-constraint method, which allows evaluating Gibbs free-energy profiles. The current calculations give an indication why, at room temperature, both BODIPY and DiI-C18(5) probes prefer the gel (So) phase in DOPC/DPPC (2:3 molar ratio) and the liquid-ordered (Lo) phase in DOPC/SM/Chol (1:2:1 molar ratio) mixtures. This study highlights the important differences in orientation and location and therefore in efficiency between the probes when they are used in fluorescence microscopy to screen various lipid bilayer membrane phases. Dependent on the lipid composition, the angle between the transition-state dipole moments of both probes and the normal to the membrane is found to deviate clearly from 90°. It is seen that the DiI-C18(5) probe is located in the headgroup region of the SM/Chol mixture, in close contact with water molecules. A fluorescence anisotropy study also indicates that DiI-C18(5) gives rise to a distinctive behavior in the SM/Chol membrane compared to the other considered membranes. The latter behavior has not been seen for the studied BODIPY probe, which is located deeper in the membrane.


Asunto(s)
Colorantes Fluorescentes/química , Hidrocarburos/química , Membrana Dobles de Lípidos/química , Temperatura , Colesterol/química , Ambiente , Polarización de Fluorescencia , Microscopía Fluorescente , Fosfatidilcolinas/química , Liposomas Unilamelares/química
3.
Phys Chem Chem Phys ; 13(32): 14302-10, 2011 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-21695318

RESUMEN

Responsive monolayers are key building blocks for future applications in organic and molecular electronics in particular because they hold potential for tuning the physico-chemical properties of interfaces, including their energetics. Here we study a photochromic SAM based on a conjugated azobenzene derivative and its influence on the gold work function (Φ(Au)) when chemisorbed on its surface. In particular we show that the Φ(Au) can be modulated with external stimuli by controlling the azobenzene trans/cis isomerization process. This phenomenon is characterized experimentally by four different techniques, kelvin probe, kelvin probe force microscopy, electroabsorption spectroscopy and ultraviolet photoelectron spectroscopy. The use of different techniques implies exposing the SAM to different measurement conditions and different preparation methods, which, remarkably, do not alter the observed work function change (Φ(trans)-Φ(cis)). Theoretical calculations provided a complementary insight crucial to attain a deeper knowledge on the origin of the work function photo-modulation.


Asunto(s)
Compuestos Azo/química , Oro/química , Membranas Artificiales , Teoría Cuántica , Compuestos Azo/síntesis química , Estructura Molecular , Tamaño de la Partícula , Procesos Fotoquímicos , Estereoisomerismo , Propiedades de Superficie
4.
Pigment Cell Melanoma Res ; 21(6): 700-9, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18983535

RESUMEN

We evaluated the contribution of germline CDKN2A mutations and MC1R variants to the development of melanoma in a hospital-based study of single (SPM, n = 398) and multiple primary melanoma (MPM, n = 95). The overall frequency of CDKN2A mutations was 15.2%, and four-fold higher in MPM than in SPM cases (OR = 4.27; 95% CI 2.43-7.53). The likelihood of identifying a CDKN2A mutation increased with family history of melanoma and younger age at diagnosis in MPM cases. Compared to SPM patients, the risk of harboring a CDKN2A mutation rose as the number of primary melanomas increased and was not influenced by family history. The G101W and E27X founder mutations were the most common. Several other mutations (W15X, Q50X, R58X, A68L, A127P and H142R) were detected for the first time in Italian patients. One novel mutation, T77A, was identified. Several non-coding variants with unknown functional significance were also found (5'UTR -25C > T, -21C > T, -67G > C, IVS1 +37G > C); the novel 5'UTR -21C > T variant was not detected in controls. The CDKN2A A148T polymorphism was more frequent in MPM patients than in the control population (15.7% versus 6.6%). Compared to the SPM patients, MPM cases had a 2-fold increased probability of being MC1R variant carriers and a higher probability of carrying two or more variants. No specific association was observed between the type of variant and the number of melanomas, suggesting that the number rather than the type of MC1R variant increases the risk of MPM. We observed no interaction between CDKN2A status and the presence of MC1R variants. The high frequency of CDKN2A mutations in our MPM cases, independent of their family history, is of relevance to genetic counseling and testing in our population.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Variación Genética/genética , Mutación de Línea Germinal/genética , Melanoma/genética , Receptor de Melanocortina Tipo 1/genética , Neoplasias Cutáneas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Quinasa 4 Dependiente de la Ciclina/genética , Femenino , Humanos , Masculino , Melanoma/clasificación , Melanoma/patología , Persona de Mediana Edad , Factores de Riesgo , Neoplasias Cutáneas/clasificación , Neoplasias Cutáneas/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA