RESUMEN
The development of technologies that allow the production of enzymes at a competitive cost is of great importance for several biotechnological applications, and the use of agro-industrial by-products is an excellent alternative to minimize costs and reduce environmental impacts. This study aimed to produce endo-xylanases using agro-industrial substrates rich in hemicellulose as sources of xylan in culture media. For this purpose, the yeast Cryptococcus laurentti and five lignocellulosic materials (defatted rice bran, rice husk, corn cob, oat husks, and soybean tegument), with and without pretreatment, were used as a source of xylan for enzyme production. To insert the by-products in the culture medium, they were dried and treated (if applicable) with 4% (w.v-1) NaOH and then added in a concentration of 2% (w.v-1). The cultures were agitated for 96 h, and the aliquots were removed to determine the enzymatic activities. Among the by-products studied, the maximum activity (8.7 U. mL-1 at pH 7.3) was obtained where rice bran was used. In contrast, corn cob was the by-product that resulted in lower enzyme production (1.6 U.mL-1). Thus, the defatted rice bran deserves special attention in front of the other by-products used since it provides the necessary substrate for producing endo-xylanases by yeast.
RESUMEN
Cacti are a distinguished group of plants that stand out for their great nutritional values, diverse uses, and unique morphology, allowing them to grow and thrive under different conditions such as dry, xeric, and even low-temperature environments. The world is going through significant climate changes that are affecting the agriculture system. Therefore, sustainable and multifunctional crops, as many species of the Cactaceae family are, might be a good alternative in the near future. In this work, the uses of cacti in human food were analyzed through a scientific prospection from the point of view of their temporal and spatial distribution and potential uses. Brazil is the country with more publications related to the scope of this work, followed by Mexico. The presence of cacti in these countries can influence their interest in these species, which might reflect the results encountered in this study. The uses and ethnobotanical applications of cacti vary in different countries worldwide. Cactus is consumed fresh (in salads), in preparations (jams and sweets), and juices, being also present in traditional dishes in countries like Mexico. This study emphasizes cacti's importance in people's diets and ongoing world changes. Their ability to thrive even in hot environments with low water resources will lead to a greater focus on these species in the upcoming years. Furthermore, these plants have great flavor and contain several beneficial chemical compounds with desirable nutritional and health properties. Therefore, knowledge dissemination combined with technological innovations will allow greater use of these multifunctional species for human consumption. © 2024 Society of Chemical Industry.
Asunto(s)
Cactaceae , Cactaceae/química , Cactaceae/crecimiento & desarrollo , Humanos , México , Brasil , Valor Nutritivo , EtnobotánicaRESUMEN
Conventional textile effluent treatments cannot remove methylene blue, a mutagenic azo dye, and an endocrine disruptor, that remains in the drinking water after conventional water treatment. However, the spent substrate from Lentinus crinitus mushroom cultivation, a waste, could be an attractive alternative to remove persistent azo dyes in water. The objective of this study was to assess the methylene blue biosorption by spent substrate from L. crinitus mushroom cultivation. The spent substrate obtained after mushroom cultivation had been characterized by the point of zero charge, functional groups, thermogravimetric analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. Moreover, the spent substrate biosorption capacity was determined in function of pH, time, and temperature. The spent substrate had a point of zero charge value of 4.3 and biosorbed 99% of methylene blue in pH from 3 to 9, with the highest biosorption in the kinetic assay of 15.92 mg g- 1, and in the isothermal assay of 120.31 mg g- 1. Biosorption reached equilibrium at 40 min after mixing and best fitted the pseudo-second-order model. Freundlich model best fitted the isothermal parameters and each 100 g spent substrate biosorbed 12 g dye in an aqueous solution. The spent substrate of L. crinitus cultivation is an effective biosorbent of methylene blue and an alternative to removing this dye from water, adding value to the mushroom production chain, and supporting the circular economy.
Asunto(s)
Agaricales , Contaminantes Químicos del Agua , Termodinámica , Azul de Metileno , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis , Adsorción , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos Azo , ColorantesRESUMEN
Most dyes used in the food industry are synthetic and can be a health hazard. Red tomato may serve as a natural alternative dye to replace synthetic colorants. This study aimed to review the literature on the addition of red tomato products (powder tomato, paste, freeze-dried, tomato peel powder, tomato pomace) to reduce the usage of synthetic dyes in the food industry. Red tomato products have been used as coloring in pasta, bologna, sausages, cookies, crackers, macaroons, hamburgers, breads, muffins, cheeses, and nuggets. The trans-cis isomerization of lycopene by oxidative processes directly affects the color of the pigment. The lycopene contained in tomato has antioxidant activity and could reduce or eliminate other oxidants and/or synthetic preservatives in food. Moreover, tomatoes in foods have high sensory scores, nutritional appeal, and marketing potential. However, its use as a food colorant has been not extensively explored. Therefore, further studies are still required, especially on the stability of carotenoids in tomatoes used in processed foods.
Asunto(s)
Carotenoides/química , Industria de Alimentos , Licopeno/química , Solanum lycopersicum/química , Antioxidantes/química , Carotenoides/farmacología , Colorantes/química , Colorantes/toxicidad , Colorantes de Alimentos/química , Colorantes de Alimentos/toxicidad , Humanos , Licopeno/farmacologíaRESUMEN
Phenolic compounds were extracted from biphasic olive pomace and their biological potential was characterised. Two different extracts were prepared, E1 (40% methanol) and E2 (80% methanol), both subjected to agitation (180 min) and 70 °C. LC-ESI-qTOF-MS was used for individual quantification of the extracted phenolic compounds. The antioxidant activity was determined using different methods, including nitric oxide, DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydroxyl radical. The enzymes α-amylase and α-glucosidase were used to evaluate the antihyperglycemic potential and sulforhodamine B and MTT (tetrazolium salt) for antitumor activity. To evaluate the antimicrobial activity, minimum inhibitory concentration and minimum bactericidal concentration of the extracts, the disc diffusion technique was used. Among the phenolic compounds present, tyrosol was highlighted in both extracts, as well as the anti-hyperglycemic effects, antitumor action and antioxidant activity. The antimicrobial activity found in the extracts was considered moderate to weak.
RESUMEN
The use of carrier systems for the protection and delivery of bioactive compounds in the agri-food industry is an area of opportunity that requires the design of new systems and sources of materials for their structure. Chia seeds (Salvia hispanica L.) produce mucilage with functional qualities that allow their application in diverse areas of the food industry. These qualities have been used to form very stable carrier systems, such as capsules, emulsions, coatings, and films that can protect and prolong the functionalities of loaded compounds (e.g., antimicrobial and antioxidant capabilities). This paper presents a review of chia mucilage-based carrier systems and their applications in food products (micro-and nanoparticles, emulsions, coatings, and films for food packaging), as well as the current technological prospects of these systems. The use of chia mucilage in coatings and films shows a high potential for use in biodegradable, edible, and organic packaging. Although many studies have been conducted on chia mucilage encapsulation systems, there is still a gap in the application of capsules and particles in food.
Asunto(s)
Emulsiones , Polisacáridos , Cápsulas , Embalaje de Alimentos , SemillasRESUMEN
This review considers alternative protein sources through the analysis of food science literature and patents. Data collection was performed from scientific literature and patent documents using the Scopus and National Institute of Industrial Property databases, with a term combination "alternative protein source" and "source* AND protein* AND alternative*". A total of 945 documents were analyzed. The scientific prospection showed that agricultural and biological science was the main application area. The food industry area had the highest number of filed patents. The annual evaluation of published documents demonstrated that this area had been investigated since the 1970s, and the number of articles was twice than that of filled patents. Although protein products are available for sale, animal and vegetable sources replace conventional protein products. Presently, alternative protein sources are already a worldwide trend in the food industry, enabling the development of new products to facilitate their insertion into the consumer market.
Asunto(s)
Bibliometría , Animales , Bases de Datos FactualesRESUMEN
BACKGROUND: Edible oils have gained the interest of several industrial sectors for the different health benefits they offer, such as the supply of bioactive compounds and essential fatty acids. Microencapsulation is one of the techniques that has been adopted by industries to minimize the degradation of oils, facilitating their processing. OBJECTIVE: To evaluate the intellectual property related to patent documents referring to microencapsulated oils used in foods. METHODS: This prospective study investigated the dynamics of patents filed in the Espacenet and National Institute of Industrial Property (INPI) databases, and it mapped technological developments in microencapsulation in comparison with scientific literature. RESULTS: The years 2015 and 2018 showed the greatest growth in the number of patents filed in the Espacenet and INPI databases, respectively, with China leading the domains of origin, inventors, and owners of microencapsulation technology. The largest number of applications of microcapsules were observed in the food industry, and the foods containing microencapsulated oils were powdered seasonings, dairy products, rice flour, nutritional formulae, pasta, nutritional supplements, and bread. The increase in oxidative stabilities of oils was the most cited objective to microencapsulate oils. Spray drying was the most widely used microencapsulation technique, and maltodextrin, gum arabic, and modified starch were the most widely used wall materials. CONCLUSION: Microencapsulation of oils has been expanding over the years and increasing the possibilities of the use of microcapsules, but further investments and development of policies and incentive programs to boost this technology need to be made in less developed countries. For future perspectives, the microencapsulation technique is already a worldwide trend in the food industry, enabling the development of new products to facilitate their insertion in the consumer market.
Asunto(s)
Patentes como Asunto , Aceites de Plantas , Cápsulas , Goma Arábiga , Estudios ProspectivosRESUMEN
BACKGROUND: Essential oils (EOs) are natural substances that serve as sources of bioactive compounds with antioxidant and antimicrobial properties. OBJECTIVE: This objective is to understand intellectual property related to patent documents on EOs and nanotechnology. METHODS: The nanotechnology growth curve applied to EOs demonstrated that the period from 2015 to 2017 was the most prominent, with a peak in 2016. China is the dominant country, mainly through research developed in the academic area. RESULTS: The food industry area had the highest number of patents filed, highlighting the preservation line. Ginger essential oil, chitosan and Tween 80 were preferentially used as a core, wall material, and emulsifier, respectively. In the market, the use of EOs is more associated with the pharmaceutical/ cosmetics industry. In addition, the food industry market bets more on products based on hemp oil nanocapsules. CONCLUSION: EO nanotechnology is promising for the development of sustainable food systems. However, this nanotechnology in Brazil has not yet advanced enough in the food industry, although there are government incentives that may change this paradigm in the future. The profile of the patent documents and the products in the market differ between the application and the types of oils. In addition, there is a gap between the volume of patent documents investigated and the transfer of technology to the commercial sector, but this constitution could be better explored, given the properties of EOs.
Asunto(s)
Aceites Volátiles , Cannabis , Análisis de Datos , Nanotecnología , Patentes como Asunto , Extractos VegetalesRESUMEN
Lentinus crinitus (Basidiomycota: Polyporales) is a saprophytic fungus with biotechnological importance described more than 20 years ago. However, there are few studies on the long-term preservation of this basidiomycete. Cryopreservation is a long-term storage technique that reduces the metabolic activity of microorganisms, but its success depends on the adjustment of the freezing process, the cryoprotectants, and the protective substrates for each species. This study aimed to assess the mycelial viability and genetic stability of L. crinitus strains cryopreserved at -86 °C for two years by the wheat grain technique using different cryoprotectants and freezing methods. Three strains of L. crinitus (U9-1, U13-5, and U15-12) were subjected to different concentrations and types of cryoprotectants (dimethyl sulfoxide, glycerol, glucose, and sucrose), freezing methods such as immediate freezing from 25 to -86 °C and progressing freezing from 25 to -86 °C in a freezing container with isopropyl alcohol to control the rate of cell freezing at -1 °C min-1, protective substrate (wheat grain and 2% malt extract agar), and cryopreservation period (1, 6, 12, and 24 months). After thawing, samples were evaluated for mycelial viability, time to mycelial recovery, mycelial stability, and genetic stability of the fungus. All techniques achieved effective cryopreservation at -86 °C, mainly with the wheat grain technique. All cryoprotectants (3.5% glycerol, 1.5% dimethyl sulfoxide, 25% sucrose, and 5% glucose), freezing methods (immediate and gradual), and protective substrate (wheat grain and malt extract agar) were effective for cryopreservation of the three L.crinitus strains in an ultra-low temperature freezer for two years. Mycelial viability, mycelial stability, and genetic stability of the fungus were not affected after two-year cryopreservation, evidencing the robustness of the long-term cryopreservation technique and the fungus.
Asunto(s)
Basidiomycota , Dimetilsulfóxido , Agar , Basidiomycota/metabolismo , Criopreservación/métodos , Crioprotectores/farmacología , Congelación , Glucosa , Glicerol , Lentinula , Extractos Vegetales , Sacarosa , TriticumRESUMEN
Due to the appreciable amounts of bioactive compounds in olive leaves and the effect of abiotic stresses on their synthesis, this study evaluated the metabolic profile of leaves of olive cultivars (Arbequina, Manzanilla and Picual) collected in four periods of the year (autumn, winter, spring and summer). The determination of the profile of bioactive compounds (phenolic compounds, flavonoids, tannins, carotenoids and chlorophylls) by spectrophotometry and the individual compounds by liquid chromatography coupled to mass spectrum, as well as antioxidant potential tests were performed. As results it was possible to observe that the leaves of the cultivar Manzanilla presented the highest levels of phenolic compounds and that the leaves collected in the summer presented a number of compounds much more relevant than the others. Thus, it was possible to conclude that the cultivar and the collection season significantly affect the bioactive content and the antioxidant potential of olive leaves.