Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 467(7312): 185-9, 2010 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-20829790

RESUMEN

Electrons in a single sheet of graphene behave quite differently from those in traditional two-dimensional electron systems. Like massless relativistic particles, they have linear dispersion and chiral eigenstates. Furthermore, two sets of electrons centred at different points in reciprocal space ('valleys') have this dispersion, giving rise to valley degeneracy. The symmetry between valleys, together with spin symmetry, leads to a fourfold quartet degeneracy of the Landau levels, observed as peaks in the density of states produced by an applied magnetic field. Recent electron transport measurements have observed the lifting of the fourfold degeneracy in very large applied magnetic fields, separating the quartet into integer and, more recently, fractional levels. The exact nature of the broken-symmetry states that form within the Landau levels and lift these degeneracies is unclear at present and is a topic of intense theoretical debate. Here we study the detailed features of the four quantum states that make up a degenerate graphene Landau level. We use high-resolution scanning tunnelling spectroscopy at temperatures as low as 10 mK in an applied magnetic field to study the top layer of multilayer epitaxial graphene. When the Fermi level lies inside the fourfold Landau manifold, significant electron correlation effects result in an enhanced valley splitting for even filling factors, and an enhanced electron spin splitting for odd filling factors. Most unexpectedly, we observe states with Landau level filling factors of 7/2, 9/2 and 11/2, suggestive of new many-body states in graphene.

2.
Nano Lett ; 15(10): 6542-6, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26366713

RESUMEN

The inelastic portion of the tunnel current through an individual magnetic atom grants unique access to read out and change the atom's spin state, but it also provides a path for spontaneous relaxation and decoherence. Controlled closure of the inelastic channel would allow for the latter to be switched off at will, paving the way to coherent spin manipulation in single atoms. Here, we demonstrate complete closure of the inelastic channels for both spin and orbital transitions due to a controlled geometric modification of the atom's environment, using scanning tunneling microscopy (STM). The observed suppression of the excitation signal, which occurs for Co atoms assembled into chains on a Cu2N substrate, indicates a structural transition affecting the dz(2) orbital, effectively cutting off the STM tip from the spin-flip cotunneling path.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37639421

RESUMEN

Optical see-through head-mounted displays (OST HMDs) are a popular output medium for mobile Augmented Reality (AR) applications. To date, they lack efficient text entry techniques. Smartphones are a major text entry medium in mobile contexts but attentional demands can contribute to accidents while typing on the go. Mobile multi-display ecologies, such as combined OST HMD-smartphone systems, promise performance and situation awareness benefits over single-device use. We study the joint performance of text entry on mobile phones with text output on optical see-through head-mounted displays. A series of five experiments with a total of 86 participants indicate that, as of today, the challenges in such a joint interactive system outweigh the potential benefits.

4.
IEEE Trans Vis Comput Graph ; 28(5): 2069-2079, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35167458

RESUMEN

Virtual Reality (VR) has the potential to support mobile knowledge workers by complementing traditional input devices with a large three-dimensional output space and spatial input. Previous research on supporting VR knowledge work explored domains such as text entry using physical keyboards and spreadsheet interaction using combined pen and touch input. Inspired by such work, this paper probes the VR design space for authoring presentations in mobile settings. We propose PoVRPoint-a set of tools coupling pen- and touch-based editing of presentations on mobile devices, such as tablets, with the interaction capabilities afforded by VR. We study the utility of extended display space to, for example, assist users in identifying target slides, supporting spatial manipulation of objects on a slide, creating animations, and facilitating arrangements of multiple, possibly occluded shapes or objects. Among other things, our results indicate that 1) the wide field of view afforded by VR results in significantly faster target slide identification times compared to a tablet-only interface for visually salient targets; and 2) the three-dimensional view in VR enables significantly faster object reordering in the presence of occlusion compared to two baseline interfaces. A user study further confirmed that the interaction techniques were found to be usable and enjoyable.


Asunto(s)
Interfaz Usuario-Computador , Realidad Virtual , Gráficos por Computador , Humanos , Tacto
5.
Science ; 372(6545): 964-968, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34045351

RESUMEN

Full insight into the dynamics of a coupled quantum system depends on the ability to follow the effect of a local excitation in real-time. Here, we trace the free coherent evolution of a pair of coupled atomic spins by means of scanning tunneling microscopy. Rather than using microwave pulses, we use a direct-current pump-probe scheme to detect the local magnetization after a current-induced excitation performed on one of the spins. By making use of magnetic interaction with the probe tip, we are able to tune the relative precession of the spins. We show that only if their Larmor frequencies match, the two spins can entangle, causing angular momentum to be swapped back and forth. These results provide insight into the locality of electron spin scattering and set the stage for controlled migration of a quantum state through an extended spin lattice.

6.
Artículo en Inglés | MEDLINE | ID: mdl-33017290

RESUMEN

Virtual Reality (VR) has the potential to transform knowledge work. One advantage of VR knowledge work is that it allows extending 2D displays into the third dimension, enabling new operations, such as selecting overlapping objects or displaying additional layers of information. On the other hand, mobile knowledge workers often work on established mobile devices, such as tablets, limiting interaction with those devices to a small input space. This challenge of a constrained input space is intensified in situations when VR knowledge work is situated in cramped environments, such as airplanes and touchdown spaces. In this paper, we investigate the feasibility of interacting jointly between an immersive VR head-mounted display and a tablet within the context of knowledge work. Specifically, we 1) design, implement and study how to interact with information that reaches beyond a single physical touchscreen in VR; 2) design and evaluate a set of interaction concepts; and 3) build example applications and gather user feedback on those applications.

7.
IEEE Trans Vis Comput Graph ; 25(11): 3190-3201, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31403423

RESUMEN

Physical keyboards are common peripherals for personal computers and are efficient standard text entry devices. Recent research has investigated how physical keyboards can be used in immersive head-mounted display-based Virtual Reality (VR). So far, the physical layout of keyboards has typically been transplanted into VR for replicating typing experiences in a standard desktop environment. In this paper, we explore how to fully leverage the immersiveness of VR to change the input and output characteristics of physical keyboard interaction within a VR environment. This allows individual physical keys to be reconfigured to the same or different actions and visual output to be distributed in various ways across the VR representation of the keyboard. We explore a set of input and output mappings for reconfiguring the virtual presentation of physical keyboards and probe the resulting design space by specifically designing, implementing and evaluating nine VR-relevant applications: emojis, languages and special characters, application shortcuts, virtual text processing macros, a window manager, a photo browser, a whack-a-mole game, secure password entry and a virtual touch bar. We investigate the feasibility of the applications in a user study with 20 participants and find that, among other things, they are usable in VR. We discuss the limitations and possibilities of remapping the input and output characteristics of physical keyboards in VR based on empirical findings and analysis and suggest future research directions in this area.

8.
Rev Sci Instrum ; 81(12): 121101, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21198007

RESUMEN

We describe the design, development and performance of a scanning probe microscopy (SPM) facility operating at a base temperature of 10 mK in magnetic fields up to 15 T. The microscope is cooled by a custom designed, fully ultra-high vacuum (UHV) compatible dilution refrigerator (DR) and is capable of in situ tip and sample exchange. Subpicometer stability at the tip-sample junction is achieved through three independent vibration isolation stages and careful design of the dilution refrigerator. The system can be connected to, or disconnected from, a network of interconnected auxiliary UHV chambers, which include growth chambers for metal and semiconductor samples, a field-ion microscope for tip characterization, and a fully independent additional quick access low temperature scanning tunneling microscope (STM) and atomic force microscope (AFM) system. To characterize the system, we present the cooling performance of the DR, vibrational, tunneling current, and tip-sample displacement noise measurements. In addition, we show the spectral resolution capabilities with tunneling spectroscopy results obtained on an epitaxial graphene sample resolving the quantum Landau levels in a magnetic field, including the sublevels corresponding to the lifting of the electron spin and valley degeneracies.

9.
Science ; 317(5842): 1199-203, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17761877

RESUMEN

Magnetic anisotropy allows magnets to maintain their direction of magnetization over time. Using a scanning tunneling microscope to observe spin excitations, we determined the orientation and strength of the anisotropies of individual iron and manganese atoms on a thin layer of copper nitride. The relative intensities of the inelastic tunneling processes are consistent with dipolar interactions, as seen for inelastic neutron scattering. First-principles calculations indicate that the magnetic atoms become incorporated into a polar covalent surface molecular network in the copper nitride. These structures, which provide atom-by-atom accessibility via local probes, have the potential for engineering anisotropies large enough to produce stable magnetization at low temperatures for a single atomic spin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA