Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Metabolomics ; 18(8): 58, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35859216

RESUMEN

INTRODUCTION: Metabolomics studies in canine endocrine abnormalities are sparse and basic information on these abnormalities must be generated. OBJECTIVES: To characterize the metabolic changes associated with elevated fructosamine, reflecting poor glycemic control, and low thyroxine, a thyroid hormone controlling metabolism. METHODS: Leftovers of clinical serum samples; 25 controls, 79 high fructosamine, and 47 low thyroxine, were analyzed using 1H NMR and differences were evaluated using Firth logistic regression. RESULTS: Both high fructosamine and low thyroxine were associated with changes in concentrations of multiple metabolites, including glycoprotein acetyls and lipids. CONCLUSION: These findings suggest promising makers for further research and clinical validation.


Asunto(s)
Enfermedades de los Perros , Hiperglucemia , Animales , Perros , Fructosamina , Metabolómica , Tiroxina
3.
Metabolomics ; 17(6): 54, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34076758

RESUMEN

INTRODUCTION: Phenobarbital is a commonly used anticonvulsant for the treatment of canine epileptic seizures. In addition to its central nervous system (CNS) depressing effects, long-term phenobarbital administration affects liver function. However, broader metabolic consequences of phenobarbital treatment are poorly characterized. OBJECTIVES: To identify metabolic changes in the sera of phenobarbital-treated dogs and to investigate the relationship between serum phenobarbital concentration and metabolite levels. METHODS: Leftovers of clinical samples were used: 58 cases with phenobarbital concentrations ranging from 7.8 µg/mL to 50.8 µg/mL, and 25 controls. The study design was cross-sectional. The samples were analyzed by a canine-specific 1H NMR metabolomics platform. Differences between the case and control groups were evaluated by logistic regression. The linear relationship between metabolite and phenobarbital concentrations was evaluated using linear regression. RESULTS: Increasing concentrations of glycoprotein acetyls, LDL particle size, palmitic acid, and saturated fatty acids, and decreasing concentrations of albumin, glutamine, histidine, LDL particle concentration, multiple HDL measures, and polyunsaturated fatty acids increased the odds of the sample belonging to the phenobarbital-treated group, having a p-value < .0033, and area under the curve (AUC) > .7. Albumin and glycoprotein acetyls had the best discriminative ability between the groups (AUC: .94). No linear associations between phenobarbital and metabolite concentrations were observed. CONCLUSION: The identified metabolites are known to associate with, for example, liver and CNS function, inflammatory processes and drug binding. The lack of a linear association to phenobarbital concentration suggests that other factors than the blood phenobarbital concentration contribute to the magnitude of metabolic changes.


Asunto(s)
Enfermedades de los Perros , Metabolómica , Fenobarbital , Albúminas , Animales , Estudios Transversales , Perros
4.
PLoS Genet ; 14(4): e1007361, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29708978

RESUMEN

Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk variants, and their relevance for veterinary medicine, breeding programs and animal welfare.


Asunto(s)
Enfermedades de los Perros/genética , Perros/genética , Animales , Cruzamiento , Bases de Datos Genéticas , Enfermedades de los Perros/epidemiología , Femenino , Frecuencia de los Genes , Genes Recesivos , Predisposición Genética a la Enfermedad , Pruebas Genéticas/veterinaria , Variación Genética , Vigor Híbrido , Masculino , Epidemiología Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria , Prevalencia , Especificidad de la Especie
5.
Front Vet Sci ; 10: 1105113, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816179

RESUMEN

Introduction: Reproduction causes major hormonal and physiological changes to the female body. However, the metabolic changes occurring during canine reproduction are scarcely studied. Methods: In this cross-sectional study, we assessed the metabolic effects of canine reproductive status using a 1H NMR metabolomics platform optimized and validated for canine use. The study population consisted of a total of 837 healthy, intact female dogs in breeding age, of which 663 dogs were in anestrus, 78 in heat, 43 were pseudopregnant, 15 were pregnant, and 38 were lactating. The differences in metabolite profiles between these states were studied by the Kruskal-Wallis test with post-hoc tests performed using the Dunn's test, and visualized by box plots and a heatmap. The ability of the metabolite profile to differentiate pregnant dogs from non-pregnant ones was assessed by creating a multivariate Firth logistic regression model using forward stepwise selection. Results: Lactation, pregnancy and heat all were associated with distinct metabolic changes; pregnancy caused major changes in the concentrations of glycoprotein acetyls, albumin and creatinine, and smaller changes in several lipids, citrate, glutamine, and alanine. Pseudopregnancy, on the other hand, metabolically largely resembled anestrus. Lactation caused major changes in amino acid concentrations and smaller changes in several lipids, albumin, citrate, creatinine, and glycoprotein acetyls. Heat, referring to proestrus and estrus, affected cholesterol and LDL metabolism, and increased HDL particle size. Albumin and glycoprotein acetyls were the metabolites included in the final multivariate model for pregnancy detection, and could differentiate pregnant dogs from non-pregnant ones with excellent sensitivity and specificity. Discussion: These results increase our understanding of the metabolic consequences of canine reproduction, with the possibility of improving maternal health and ensuring reproductive success. The identified metabolites could be used for confirming canine pregnancy.

6.
PLoS One ; 18(5): e0284570, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37163464

RESUMEN

During pregnancy and parturition, female dogs have to cope with various challenges such as providing nutrients for the growth of the fetuses, hormonal changes, whelping, nursing, milk production, and uterine involution. Metabolomic research has been used to characterize the influence of several factors on metabolism such as inter- and intra-individual factors, feeding, aging, inter-breed differences, drug action, behavior, exercise, genetic factors, neuter status, and pathologic processes. Aim of this study was to identify metabolites showing specific changes in blood serum at the different phases of pregnancy and lactation. In total, 27 privately owned female dogs of 21 different breeds were sampled at six time points: during heat, in early, mid and late pregnancy, at the suspected peak of lactation and after weaning. A validated and highly automated canine-specific NMR metabolomics technology was utilized to quantitate 123 measurands. It was evaluated which metabolite concentrations showed significant changes between the different time points. Metabolites were then grouped into five clusters based on concentration patterns and biochemical relationships between the metabolites: high in mid-pregnancy, low in mid-pregnancy, high in late pregnancy, high in lactation, and low in lactation. Several metabolites such as albumin, glycoprotein acetyls, fatty acids, lipoproteins, glucose, and some amino acids show similar patterns during pregnancy and lactation as shown in humans. The patterns of some other parameters such as branched-chain amino acids, alanine and histidine seem to differ between these species. For most metabolites, it is yet unstudied whether the observed changes arise from modified resorption from the intestines, modified production, or metabolism in the maternal or fetal tissues. Hence, further species-specific metabolomic research may support a broader understanding of the physiological changes caused by pregnancy that are likely to be key for the normal fetal growth and development. Our findings provide a baseline of normal metabolic changes during healthy canine pregnancy and parturition. Combined with future metabolomics findings, they may help monitor vital functions of pre-, intra-, and post-partum bitches and may allow early detection of illness.


Asunto(s)
Lactancia , Leche , Humanos , Perros , Embarazo , Animales , Femenino , Leche/metabolismo , Lactancia/metabolismo , Parto , Periodo Posparto , Ácidos Grasos/metabolismo , Metabolómica
7.
R Soc Open Sci ; 9(2): 211642, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35223061

RESUMEN

As an individual's metabolism reflects health and disease states well, metabolomics holds a vast potential in biomedical applications. However, normal physiological factors, such as age, can also influence metabolism, challenging the establishment of disease-specific metabolic aberrations. Here, we examined how physiological and diet-related factors drive variance in the metabolism of healthy pet dogs. We analysed 2068 serum samples using a canine nuclear magnetic resonance (NMR) spectroscopy-based metabolomics platform. With generalized linear models, we discovered that age, breed, sex, sterilization, diet type and fasting time significantly affected the canine metabolite profiles. Especially, breed and age caused considerable variation in the metabolite concentrations, and breeds with very different body conformations systematically differed in several lipid measurands. Our results enhance the understanding how normal physiological factors influence canine metabolism, aid accurate interpretation of the NMR results, and suggest the NMR platform might be applied in identifying aberrations in nutrient absorption and metabolism.

8.
Metabolites ; 12(4)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35448526

RESUMEN

The adrenal glands play a major role in metabolic processes, and both excess and insufficient serum cortisol concentrations can lead to serious metabolic consequences. Hyper- and hypoadrenocorticism represent a diagnostic and therapeutic challenge. Serum samples from dogs with untreated hyperadrenocorticism (n = 27), hyperadrenocorticism undergoing treatment (n = 28), as well as with untreated (n = 35) and treated hypoadrenocorticism (n = 23) were analyzed and compared to apparently healthy dogs (n = 40). A validated targeted proton nuclear magnetic resonance (1H NMR) platform was used to quantify 123 parameters. Principal component analysis separated the untreated endocrinopathies. The serum samples of dogs with untreated endocrinopathies showed various metabolic abnormalities with often contrasting results particularly in serum concentrations of fatty acids, and high- and low-density lipoproteins and their constituents, which were predominantly increased in hyperadrenocorticism and decreased in hypoadrenocorticism, while amino acid concentrations changed in various directions. Many observed serum metabolic abnormalities tended to normalize with medical treatment, but normalization was incomplete when compared to levels in apparently healthy dogs. Application of machine learning models based on the metabolomics data showed good classification, with misclassifications primarily observed in treated groups. Characterization of metabolic changes enhances our understanding of these endocrinopathies. Further assessment of the recognized incomplete reversal of metabolic alterations during medical treatment may improve disease management.

9.
J Vet Intern Med ; 36(5): 1752-1759, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35880501

RESUMEN

BACKGROUND: Metabolic profiles differ between healthy humans and those with inflammatory bowel disease. Few studies have examined metabolic profiles in dogs with chronic enteropathy (CE). HYPOTHESIS: Serum metabolic profiles of dogs with CE are significantly different from those of healthy dogs. ANIMALS: Fifty-five dogs with CE and 204 healthy controls. METHODS: A cross-sectional study. The serum concentrations of 99 metabolites measured using a canine-specific proton nuclear magnetic resonance spectroscopy platform were studied. A 2-sample unpaired t-test was used to compare the 2 study samples. The threshold for significance was set at P < .05 with a Bonferroni correction for each metabolite group. RESULTS: Nineteen metabolites and 18 indices of lipoprotein composition were significantly different between the CE and healthy dogs. Four metabolites were significantly higher in dogs with CE, including phenylalanine (mean and SD) (healthy: 0.0417 mmol/L; [SD] 0.0100; CE: 0.0480 mmol/L; SD: 0.0125; P value: <.001) and lactate (healthy: 1.8751 mmol/L; SD: 0.7808; CE: 2.4827 mmol/L; SD CE: 1.4166; P value: .003). Fifteen metabolites were significantly lower in dogs with CE, including total fatty acids, and glycine (healthy: 0.2273 mmol/L; SD: 0.0794; CE: 0.1828 mmol/L; SD CE: 0.0517; P value: <.001). CONCLUSIONS AND CLINICAL IMPORTANCE: The metabolic profile of dogs with CE is significantly different from that of healthy dogs, this opens novel research avenues to develop better diagnostic and prognostic approaches as well as therapeutic trials.


Asunto(s)
Enfermedades de los Perros , Enfermedades Inflamatorias del Intestino , Animales , Estudios Transversales , Perros , Ácidos Grasos , Glicina , Humanos , Enfermedades Inflamatorias del Intestino/veterinaria , Lactatos , Lipoproteínas , Fenilalanina , Protones
10.
Sci Rep ; 12(1): 5329, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351920

RESUMEN

Hepatopathies can cause major metabolic abnormalities in humans and animals. This study examined differences in serum metabolomic parameters and patterns in left-over serum samples from dogs with either congenital portosystemic shunts (cPSS, n = 24) or high serum liver enzyme activities (HLEA, n = 25) compared to control dogs (n = 64). A validated targeted proton nuclear magnetic resonance spectroscopy platform was used to assess 123 parameters. Principal component analysis of the serum metabolome demonstrated distinct clustering among individuals in each group, with the cluster of HLEA being broader compared to the other groups, presumably due to the wider spectrum of hepatic diseases represented in these samples. While younger and older adult control dogs had very similar metabolomic patterns and clusters, there were changes in many metabolites in the hepatopathy groups. Higher phenylalanine and tyrosine concentrations, lower branched-chained amino acids (BCAAs) concentrations, and altered fatty acid parameters were seen in cPSS dogs compared to controls. In contrast, dogs with HLEA had increased concentrations of BCAAs, phenylalanine, and various lipoproteins. Machine learning based solely on the metabolomics data showed excellent group classification, potentially identifying a novel tool to differentiate hepatopathies. The observed changes in metabolic parameters could provide invaluable insight into the pathophysiology, diagnosis, and prognosis of hepatopathies.


Asunto(s)
Enfermedades de los Perros , Hepatopatías , Malformaciones Vasculares , Animales , Perros , Hepatopatías/veterinaria , Metaboloma , Metabolómica
11.
J Vet Intern Med ; 36(1): 190-195, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34921444

RESUMEN

BACKGROUND: Metabolic profiling identifies seasonal variance of serum metabolites in humans. Despite the presence of seasonal disease patterns, no studies have assessed whether serum metabolites vary seasonally in dogs. HYPOTHESIS: There is seasonal variation in the serum metabolite profiles of healthy dogs. ANIMALS: Eighteen healthy, client-owned dogs. METHODS: A prospective cohort study. Serum metabolomic profiles were assessed monthly in 18 healthy dogs over a 12-month period. Metabolic profiling was conducted using a canine-specific proton nuclear magnetic resonance spectroscopy platform, and the effects of seasonality were studied for 98 metabolites using a cosinor model. Seasonal component was calculated, which describes the seasonal variation of each metabolite. RESULTS: We found no evidence of seasonal variation in 93 of 98 metabolites. Six metabolites had statistically significant seasonal variance, including cholesterol (mean 249 mg/dL [6.47 mmol/L] with a seasonal component amplitude of 9 mg/dL [0.23 mmol/L]; 95% confidence interval [CI] 6-13 mg/dL [0.14-0.33 mmol/L], P < .008), with a peak concentration of 264 mg/dL (6.83 mmol/L) in June and trough concentration of 236 mg/dL (6.12 mmol/L) in December. In contrast, there was a significantly lower concentration of lactate (mean 20 mg/dL [2.27 mmol/L] with a seasonal component amplitude of 4 mg/dL [0.42 mmol/L]; 95% CI 2-6 mg/dL [0.22-0.62 mmol/L], P < .001) during the summer months compared to the winter months, with a peak concentration of 26 mg/dL (2.9 mmol/L) in February and trough concentration of 14 mg/dL (1.57 mmol/L) in July. CONCLUSIONS AND CLINICAL IMPORTANCE: We found no clear evidence that seasonal reference ranges need to be established for serum metabolites of dogs.


Asunto(s)
Colesterol , Animales , Perros , Estudios Prospectivos , Valores de Referencia , Estaciones del Año
12.
Front Vet Sci ; 9: 935430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277072

RESUMEN

Consumption of medium-chain triglycerides (MCT) has been shown to improve seizure control, reduce behavioural comorbidities and improve cognitive function in epileptic dogs. However, the exact metabolic pathways affected by dietary MCT remain poorly understood. In this study, we aimed to identify changes in the metabolome and neurotransmitters levels relevant to epilepsy and behavioural comorbidities associated with the consuming of an MCT supplement (MCT-DS) in dogs with idiopathic epilepsy (IE). Metabolic alterations induced by a commercial MCT-DS in a population of 28 dogs with IE were evaluated in a 6-month multi-centre, prospective, randomised, double-blinded, controlled cross-over trial design. A metabolic energy requirement-based amount of 9% MCT or control oil was supplemented to the dogs' stable base diet for 3 months, followed by the alternative oil for another 3 months. A validated, quantitative nuclear magnetic resonance (NMR) spectroscopy platform was applied to pre- and postprandially collected serum samples to compare the metabolic profile between both DS and baseline. Furthermore, alterations in urinary neurotransmitter levels were explored. Five dogs (30%) had an overall reduction in seizure frequency of ≥50%, and were classified as MCT-responders, while 23 dogs showed a ≤50% reduction, and were defined as MCT non-responders. Amino-acid metabolism was significantly influenced by MCT consumption compared to the control oil. While the serum concentrations of total fatty acids appeared similar during both supplements, the relative concentrations of individual fatty acids differed. During MCT supplementation, the concentrations of polyunsaturated fatty acids and arachidonic acid were significantly higher than under the control oil. ß-Hydroxybutyric acid levels were significantly higher under MCT supplementation. In total, four out of nine neurotransmitters were significantly altered: a significantly increased γ-aminobutyric acid (GABA) concentration was detected during the MCT-phase accompanied by a significant shift of the GABA-glutamate balance. MCT-Responders had significantly lowered urinary concentrations of histamine, glutamate, and serotonin under MCT consumption. In conclusion, these novel data highlight metabolic changes in lipid, amino-acid and ketone metabolism due to MCT supplementation. Understanding the metabolic response to MCT provides new avenues to develop better nutritional management with improved anti-seizure and neuroprotective effects for dogs with epilepsy, and other behavioural disorders.

13.
Vet Clin Pathol ; 50(3): 410-426, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34431130

RESUMEN

BACKGROUND: Metabolomics has been proven to be an invaluable research tool by providing comprehensive insight into systemic metabolism. However, the lack of scalable and quantitative methods with known reference intervals (RIs) and documented reproducibility has prevented the use of metabolomics in the clinical setting. OBJECTIVE: The objective of this study was to validate the developed quantitative nuclear magnetic resonance (NMR) spectroscopy-based metabolomics platform for canine serum and plasma samples and determine optimal sample handling conditions for its use. METHODS: Altogether, 8247 canine samples were analyzed using a Bruker's 500 MHz NMR spectrometer. Using statistical approaches derived from international guidelines, we studied method precision, measurand stability in various long- and short-term storage conditions, as well as the effect of prolonged contact with red blood cells (RBCs), and differences among blood collection tubes. We also screened interferences with lipemia, hemolysis, and bilirubinemia. The results were compared against routine clinical chemistry methods, and RIs were defined for all measurands. RESULTS: We determined RIs for 123 measurands, most of which were previously unpublished. The reproducibility of the results of the NMR platform appeared generally outstanding, and the integrity of the results can be ensured by following standard blood drawing and processing guidelines. CONCLUSIONS: Owing to the advantages of quantitative results, high reproducibility, and scalability, this canine metabolomics platform holds great potential for numerous clinical and research applications to improve canine health and well-being.


Asunto(s)
Imagen por Resonancia Magnética , Metabolómica , Animales , Recolección de Muestras de Sangre/veterinaria , Perros , Espectroscopía de Resonancia Magnética , Reproducibilidad de los Resultados
14.
J Vet Intern Med ; 35(1): 405-414, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33349961

RESUMEN

BACKGROUND: The kidneys have many essential metabolic functions, and metabolic disturbances during decreased renal function have not been studied extensively. OBJECTIVES: To identify metabolic changes in blood samples with increased serum creatinine concentration, indicating decreased glomerular filtration. ANIMALS: Clinical samples analyzed using a nuclear magnetic resonance (NMR) based metabolomics platform. The case group consisted of 23 samples with serum creatinine concentration >125 µmol/L, and the control group of 873 samples with serum creatinine concentration within the reference interval. METHODS: Biomarker association with increased serum creatinine concentration was evaluated utilizing 3 statistical approaches: Wilcoxon rank-sum test, logistic regression analysis (false discovery rate (FDR)-corrected P-values), and random forest classification. Medians of the biomarkers were compared to reference intervals. A heatmap and box plots were used to represent the differences. RESULTS: All 3 statistical approaches identified similar analytes associated with increased serum creatinine concentrations. The percentages of citrate, tyrosine, branched-chain amino acids, valine, leucine, albumin, linoleic acid and the ratio of phenylalanine to tyrosine differed significantly using all statistical approaches, acetate differed using the Wilcoxon test and random forest, docosapentaenoic acid percentage only using logistic regression (P < .05), and alanine only using random forest. CONCLUSIONS AND CLINICAL IMPORTANCE: We identified several metabolic changes associated with increased serum creatinine concentrations, including prospective diagnostic markers and therapeutic targets. Further research is needed to verify the association of these changes with the clinical state of the dog. The NMR metabolomics test is a promising tool for improving diagnostic testing and management of renal diseases in dogs.


Asunto(s)
Riñón , Metabolómica , Animales , Biomarcadores , Creatinina , Perros , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA