Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Digit Health ; 5: 1058163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969956

RESUMEN

The COVID-19 pandemic has caused massive humanitarian and economic damage. Teams of scientists from a broad range of disciplines have searched for methods to help governments and communities combat the disease. One avenue from the machine learning field which has been explored is the prospect of a digital mass test which can detect COVID-19 from infected individuals' respiratory sounds. We present a summary of the results from the INTERSPEECH 2021 Computational Paralinguistics Challenges: COVID-19 Cough, (CCS) and COVID-19 Speech, (CSS).

2.
Front Digit Health ; 5: 1196079, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37767523

RESUMEN

Recent years have seen a rapid increase in digital medicine research in an attempt to transform traditional healthcare systems to their modern, intelligent, and versatile equivalents that are adequately equipped to tackle contemporary challenges. This has led to a wave of applications that utilise AI technologies; first and foremost in the fields of medical imaging, but also in the use of wearables and other intelligent sensors. In comparison, computer audition can be seen to be lagging behind, at least in terms of commercial interest. Yet, audition has long been a staple assistant for medical practitioners, with the stethoscope being the quintessential sign of doctors around the world. Transforming this traditional technology with the use of AI entails a set of unique challenges. We categorise the advances needed in four key pillars: Hear, corresponding to the cornerstone technologies needed to analyse auditory signals in real-life conditions; Earlier, for the advances needed in computational and data efficiency; Attentively, for accounting to individual differences and handling the longitudinal nature of medical data; and, finally, Responsibly, for ensuring compliance to the ethical standards accorded to the field of medicine. Thus, we provide an overview and perspective of HEAR4Health: the sketch of a modern, ubiquitous sensing system that can bring computer audition on par with other AI technologies in the strive for improved healthcare systems.

3.
iScience ; 25(8): 104644, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35856034

RESUMEN

In this article, human semen samples from the Visem dataset are automatically assessed with machine learning methods for their quality with respect to sperm motility. Several regression models are trained to automatically predict the percentage (0-100) of progressive, non-progressive, and immotile spermatozoa. The videos are adopted for unsupervised tracking and two different feature extraction methods-in particular custom movement statistics and displacement features. We train multiple neural networks and support vector regression models on the extracted features. Best results are achieved using a linear Support Vector Regressor with an aggregated and quantized representation of individual displacement features of each sperm cell. Compared to the best submission of the Medico Multimedia for Medicine challenge, which used the same dataset and splits, the mean absolute error (MAE) could be reduced from 8.83 to 7.31. We provide the source code for our experiments on GitHub (Code available at: https://github.com/EIHW/motilitAI).

4.
Front Artif Intell ; 5: 856232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372830

RESUMEN

Deep neural speech and audio processing systems have a large number of trainable parameters, a relatively complex architecture, and require a vast amount of training data and computational power. These constraints make it more challenging to integrate such systems into embedded devices and utilize them for real-time, real-world applications. We tackle these limitations by introducing DeepSpectrumLite, an open-source, lightweight transfer learning framework for on-device speech and audio recognition using pre-trained image Convolutional Neural Networks (CNNs). The framework creates and augments Mel spectrogram plots on the fly from raw audio signals which are then used to finetune specific pre-trained CNNs for the target classification task. Subsequently, the whole pipeline can be run in real-time with a mean inference lag of 242.0 ms when a DenseNet121 model is used on a consumer-grade Motorola moto e7 plus smartphone. DeepSpectrumLite operates decentralized, eliminating the need for data upload for further processing. We demonstrate the suitability of the proposed transfer learning approach for embedded audio signal processing by obtaining state-of-the-art results on a set of paralinguistic and general audio tasks, including speech and music emotion recognition, social signal processing, COVID-19 cough and COVID-19 speech analysis, and snore sound classification. We provide an extensive command-line interface for users and developers which is comprehensively documented and publicly available at https://github.com/DeepSpectrum/DeepSpectrumLite.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2623-2626, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086314

RESUMEN

Although running is a common leisure activity and a core training regiment for several athletes, between 29% and 79% of runners sustain an overuse injury each year. These injuries are linked to excessive fatigue, which alters how someone runs. In this work, we explore the feasibility of modelling the Borg received perception of exertion (RPE) scale (range: [6]-[19] [20]), a well-validated subjective measure of fatigue, using audio data captured in realistic outdoor environments via smartphones attached to the runners' arms. Using convolutional neural networks (CNNs) on log-Mel spectrograms, we obtain a mean absolute error (MAE) of 2.35 in subject-dependent experiments, demonstrating that audio can be effectively used to model fatigue, while being more easily and non-invasively acquired than by signals from other sensors.


Asunto(s)
Fatiga , Fatiga Muscular , Fatiga/diagnóstico , Humanos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA