Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Med Phys ; 38(5): 2698-707, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21776806

RESUMEN

PURPOSE: A novel 4D volumetric modulated are therapy (4D-VMAT) planning system is presented where radiation sparing of organs at risk (OARs) is enhanced by exploiting respiratory motion of tumor and healthy tissues. METHODS: In conventional radiation therapy, a motion encompassing margin is normally added to the clinical target volume (CTV) to ensure the tumor receives the planned treatment dose. This results in a substantial increase in dose to the OARs. Our 4D-VMAT algorithm aims to reduce OAR dose by incorporating 4D volumetric target and OAR motions directly into the optimization process. During optimization, phase correlated beam samples are progressively added throughout the full range of gantry rotation. The resulting treatment plans have respiratory phase-optimized apertures whose deliveries are synchronized to the patient's respiratory cycle. 4D-VMAT plans reduce dose to the OAR by: (1) eliminating the motion margin, (2) selectively redistributing OAR dose over the OAR volume, and (3) timing larger dose contributions (MU) to respiratory phases where greater separations between the target and OAR occur. Our 4D-VMAT algorithm was tested by simulating a variety of tumor motion amplitudes (0.5-2 cm) in the superior/inferior and anterior/ posterior directions. 4D-VMAT's performance was compared against 3D-VMAT, gated VMAT and dynamic multileaf collimator (DMLC) ideal-tracking VMAT. RESULTS: Results show that OAR sparing of 4D-VMAT was greater than 3D-VMAT in all cases due to the smaller PTV margin. Compared to DMLC ideal-tracking VMAT, 4D-VMAT's OAR sparing is superior only when the relative distance between the PTV and OAR is changing. For gated VMAT, results compared to 4D-VMAT are phantom dependent. There was negligible difference in plan qualities for the tested case of motion along the anterior/posterior axis. For motions along the superior/inferior axis, gated VMAT's narrow beam-on window reduces the OAR volume directly irradiated by the linac but also allows higher dose accumulation in the exposed OAR. In contrast, 4D-VMAT can reduce the OAR volume exposed to high doses but at the cost of redistributing the OAR dose over a larger volume. Finally for 4D-VMAT, an increase in tumor motion no longer resulted in greater irradiation of the OAR as seen in conventional 3D radiation therapy. OAR dose levels were preserved for increasing target motion along the anterior/posterior axis. For increasing superior/inferior motion, the volume of OAR exposed to high doses actually decreased due to dose redistribution. CONCLUSIONS: Our investigation demonstrated that the 4D-VMAT system has the potential to improve radiation therapy of periodically moving tumors over 3D-VMAT, gating or tracking methods.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Humanos , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
Radiat Oncol ; 16(1): 101, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103062

RESUMEN

PURPOSE: We recently described the validation of deep learning-based auto-segmented contour (DC) models for organs at risk (OAR) and clinical target volumes (CTV). In this study, we evaluate the performance of implemented DC models in the clinical radiotherapy (RT) planning workflow and report on user experience. METHODS AND MATERIALS: DC models were implemented at two cancer centers and used to generate OAR and CTVs for all patients undergoing RT for a central nervous system (CNS), head and neck (H&N), or prostate cancer. Radiation Therapists/Dosimetrists and Radiation Oncologists completed post-contouring surveys rating the degree of edits required for DCs (1 = minimal, 5 = significant) and overall DC satisfaction (1 = poor, 5 = high). Unedited DCs were compared to the edited treatment approved contours using Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD). RESULTS: Between September 19, 2019 and March 6, 2020, DCs were generated on approximately 551 eligible cases. 203 surveys were collected on 27 CNS, 54 H&N, and 93 prostate RT plans, resulting in an overall survey compliance rate of 32%. The majority of OAR DCs required minimal edits subjectively (mean editing score ≤ 2) and objectively (mean DSC and 95% HD was ≥ 0.90 and ≤ 2.0 mm). Mean OAR satisfaction score was 4.1 for CNS, 4.4 for H&N, and 4.6 for prostate structures. Overall CTV satisfaction score (n = 25), which encompassed the prostate, seminal vesicles, and neck lymph node volumes, was 4.1. CONCLUSIONS: Previously validated OAR DC models for CNS, H&N, and prostate RT planning required minimal subjective and objective edits and resulted in a positive user experience, although low survey compliance was a concern. CTV DC model evaluation was even more limited, but high user satisfaction suggests that they may have served as appropriate starting points for patient specific edits.


Asunto(s)
Neoplasias del Sistema Nervioso Central/radioterapia , Aprendizaje Profundo , Neoplasias de Cabeza y Cuello/radioterapia , Órganos en Riesgo/efectos de la radiación , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Neoplasias del Sistema Nervioso Central/diagnóstico por imagen , Neoplasias del Sistema Nervioso Central/patología , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/patología , Implementación de Plan de Salud , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Pronóstico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Flujo de Trabajo
3.
Radiother Oncol ; 90(1): 56-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18417232

RESUMEN

Surgical clips were investigated for partial breast image-guided radiotherapy (IGRT). Small titanium clips were insufficiently well visualised. Medium tantalum clips were best for megavoltage IGRT and small tantalum clips were best for floor mounted kilovoltage IGRT (ExacTrac). Both small tantalum and medium titanium clips were suitable for isocentric kilovoltage IGRT.


Asunto(s)
Neoplasias de la Mama/radioterapia , Fantasmas de Imagen , Instrumentos Quirúrgicos , Artefactos , Humanos , Modelos Logísticos , Tantalio , Titanio , Tomografía Computarizada por Rayos X
4.
Phys Med Biol ; 54(8): L37-41; author reply L43-4, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19305039

RESUMEN

In the note 'Single Arc IMRT?' (Bortfeld and Webb 2009 Phys. Med. Biol. 54 N9-20), Bortfeld and Webb present a theoretical investigation of static gantry IMRT (S-IMRT), single-arc IMRT and tomotherapy. Based on their assumptions they conclude that single-arc IMRT is inherently limited in treating complex cases without compromising delivery efficiency. Here we present an expansion of their work based on the capabilities of the Varian RapidArc single-arc IMRT system. Using the same theoretical framework we derive clinically deliverable single-arc IMRT plans based on these specific capabilities. In particular, we consider the range of leaf motion, the ability to rapidly and continuously vary the dose rate and the choice of collimator angle used for delivery. In contrast to the results of Bortfeld and Webb, our results show that single-arc IMRT plans can be generated that closely match the theoretical optimum. The disparity in the results of each investigation emphasizes that the capabilities of the delivery system, along with the ability of the optimization algorithm to exploit those capabilities, are of particular importance in single-arc IMRT. We conclude that, given the capabilities available with the RapidArc system, single-arc IMRT can produce complex treatment plans that are delivered efficiently (in approximately 2 min).


Asunto(s)
Radioterapia de Intensidad Modulada/métodos , Humanos , Movimiento (Física) , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/instrumentación , Factores de Tiempo
5.
Phys Med Biol ; 54(12): 3803-19, 2009 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-19478375

RESUMEN

The main objective of this manuscript is to propose a new approach to on-line adaptive radiation therapy (ART) in which daily image acquisition, plan adaptation and radiation delivery are integrated together and performed concurrently. A method is described in which on-line ART is performed based on intra-fractional digital tomosynthesis (DTS) images. Intra-fractional DTS images were reconstructed as the gantry rotated between treatment positions. An edge detection algorithm was used to automatically segment the DTS images as the gantry arrived at each treatment position. At each treatment position, radiation was delivered based on the treatment plan re-optimized for the most recent DTS image contours. To investigate the feasibility of this method, a model representing a typical prostate, bladder and rectum was used. To simulate prostate deformations, three clinically relevant, non-rigid deformations (small, medium and large) were modeled by systematically deforming the original anatomy. Using our approach to on-line ART, the original treatment plan was successfully adapted to arrive at a clinically acceptable plan for all three non-rigid deformations. In conclusion, we have proposed a new approach to on-line ART in which plan adaptation is performed based on intra-fractional DTS images. The study findings indicate that this approach can be used to re-optimize the original treatment plan to account for non-rigid anatomical deformations. The advantages of this approach are 1) image acquisition and radiation delivery are integrated in a single gantry rotation around the patient, reducing the treatment time, and 2) intra-fractional DTS images can be used to detect and correct for patient motion prior to the delivery of each beam (intra-fractional patient motion).


Asunto(s)
Intensificación de Imagen Radiográfica/métodos , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Estudios de Factibilidad , Sistemas en Línea , Proyectos Piloto , Dosificación Radioterapéutica , Integración de Sistemas
6.
Phys Imaging Radiat Oncol ; 9: 83-88, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33458430

RESUMEN

BACKGROUND AND PURPOSE: Planning complex radiotherapy treatments can be inefficient, with large variation in plan quality. In this study we evaluated plan quality and planning efficiency using real-time interactive planning (RTIP) for head and neck (HN) volumetric modulated arc therapy (VMAT). MATERIALS AND METHODS: RTIP allows manipulation of dose volume histograms (DVHs) in real-time to assess achievable planning target volume (PTV) coverage and organ at risk (OAR) sparing. For 20 HN patients previously treated with VMAT, RTIP was used to minimize OAR dose while maintaining PTV coverage. RTIP DVHs were used to guide VMAT optimization. Dosimetric differences between RTIP-assisted plans and original clinical plans were assessed. Five blinded radiation oncologists indicated their preference for each PTV, OAR and overall plan. To assess efficiency, ten patients were planned de novo by experienced and novice planners and a RTIP user. RESULTS: The average planning time with RTIP was <20 min, and most plans required only one optimization. All 20 RTIP plans were preferred by a majority of oncologists due to improvements in OAR sparing. The average maximum dose to the spinal cord was reduced by 10.5 Gy (from 49.5 to 39.0 Gy), and the average mean doses for the oral cavity, laryngopharynx, contralateral parotid and submandibular glands were reduced by 3.5 Gy (39.1-35.7 Gy), 6.8 Gy (42.5-35.7 Gy), 1.7 Gy (17.0-15.3 Gy) and 3.3 Gy (22.9-19.5 Gy), respectively. CONCLUSIONS: Incorporating RTIP into clinical workflows may increase both planning efficiency and OAR sparing.

7.
Med Phys ; 35(1): 310-7, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18293586

RESUMEN

In this work a novel plan optimization platform is presented where treatment is delivered efficiently and accurately in a single dynamically modulated arc. Improvements in patient care achieved through image-guided positioning and plan adaptation have resulted in an increase in overall treatment times. Intensity-modulated radiation therapy (IMRT) has also increased treatment time by requiring a larger number of beam directions, increased monitor units (MU), and, in the case of tomotherapy, a slice-by-slice delivery. In order to maintain a similar level of patient throughput it will be necessary to increase the efficiency of treatment delivery. The solution proposed here is a novel aperture-based algorithm for treatment plan optimization where dose is delivered during a single gantry arc of up to 360 deg. The technique is similar to tomotherapy in that a full 360 deg of beam directions are available for optimization but is fundamentally different in that the entire dose volume is delivered in a single source rotation. The new technique is referred to as volumetric modulated arc therapy (VMAT). Multileaf collimator (MLC) leaf motion and number of MU per degree of gantry rotation is restricted during the optimization so that gantry rotation speed, leaf translation speed, and dose rate maxima do not excessively limit the delivery efficiency. During planning, investigators model continuous gantry motion by a coarse sampling of static gantry positions and fluence maps or MLC aperture shapes. The technique presented here is unique in that gantry and MLC position sampling is progressively increased throughout the optimization. Using the full gantry range will theoretically provide increased flexibility in generating highly conformal treatment plans. In practice, the additional flexibility is somewhat negated by the additional constraints placed on the amount of MLC leaf motion between gantry samples. A series of studies are performed that characterize the relationship between gantry and MLC sampling, dose modeling accuracy, and optimization time. Results show that gantry angle and MLC sample spacing as low as 1 deg and 0.5 cm, respectively, is desirable for accurate dose modeling. It is also shown that reducing the sample spacing dramatically reduces the ability of the optimization to arrive at a solution. The competing benefits of having small and large sample spacing are mutually realized using the progressive sampling technique described here. Preliminary results show that plans generated with VMAT optimization exhibit dose distributions equivalent or superior to static gantry IMRT. Timing studies have shown that the VMAT technique is well suited for on-line verification and adaptation with delivery times that are reduced to approximately 1.5-3 min for a 200 cGy fraction.


Asunto(s)
Radioterapia de Intensidad Modulada/métodos , Humanos , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/radioterapia , Dosis de Radiación , Factores de Tiempo , Tomografía Computarizada por Rayos X
8.
Med Phys ; 34(4): 1431-8, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17500474

RESUMEN

Intensity-modulated radiation therapy (IMRT) treatment plans are conventionally produced by the optimization of fluence maps followed by a leaf sequencing step. An alternative to fluence based inverse planning is to optimize directly the leaf positions and field weights of multileaf collimator (MLC) apertures. This approach is typically referred to as direct aperture optimization (DAO). It has been shown that equivalent dose distributions may be generated that have substantially fewer monitor units (MU) and number of apertures compared to fluence based optimization techniques. Here we introduce a DAO technique with rotated apertures that we call rotating aperture optimization (RAO). The advantages of collimator rotation in IMRT have been shown previously and include higher fluence spatial resolution, increased flexibility in the generation of aperture shapes and less interleaf effects. We have tested our RAO algorithm on a complex C-shaped target, seven nasopharynx cancer recurrences, and one multitarget nasopharynx carcinoma patient. A study was performed in order to assess the capabilities of RAO as compared to fixed collimator angle DAO. The accuracy of fixed and rotated collimator aperture delivery was also verified. An analysis of the optimized treatment plans indicates that plans generated with RAO are as good as or better than DAO while maintaining a smaller number of apertures and MU than fluence based IMRT. Delivery verification results show that RAO is less sensitive to tongue and groove effects than DAO. Delivery time is currently increased due to the collimator rotation speed although this is a mechanical limitation that can be eliminated in the future.


Asunto(s)
Modelos Biológicos , Neoplasias Nasofaríngeas/radioterapia , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Carga Corporal (Radioterapia) , Simulación por Computador , Humanos , Control de Calidad , Dosificación Radioterapéutica , Radioterapia Conformacional/instrumentación , Efectividad Biológica Relativa , Reproducibilidad de los Resultados , Rotación , Sensibilidad y Especificidad
9.
Med Phys ; 34(5): 1631-46, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17555245

RESUMEN

This paper is the first investigation of using direct aperture optimization (DAO) for online adaptive radiation therapy (ART). A geometrical model representing the anatomy of a typical prostate case was created. To simulate interfractional deformations, four different anatomical deformations were created by systematically deforming the original anatomy by various amounts (0.25, 0.50, 0.75, and 1.00 cm). We describe a series of techniques where the original treatment plan was adapted in order to correct for the deterioration of dose distribution quality caused by the anatomical deformations. We found that the average time needed to adapt the original plan to arrive at a clinically acceptable plan is roughly half of the time needed for a complete plan regeneration, for all four anatomical deformations. Furthermore, through modification of the DAO algorithm the optimization search space was reduced and the plan adaptation was significantly accelerated. For the first anatomical deformation (0.25 cm), the plan adaptation was six times more efficient than the complete plan regeneration. For the 0.50 and 0.75 cm deformations, the optimization efficiency was increased by a factor of roughly 3 compared to the complete plan regeneration. However, for the anatomical deformation of 1.00 cm, the reduction of the optimization search space during plan adaptation did not result in any efficiency improvement over the original (nonmodified) plan adaptation. The anatomical deformation of 1.00 cm demonstrates the limit of this approach. We propose an innovative approach to online ART in which the plan adaptation and radiation delivery are merged together and performed concurrently-adaptive radiation delivery (ARD). A fundamental advantage of ARD is the fact that radiation delivery can start almost immediately after image acquisition and evaluation. Most of the original plan adaptation is done during the radiation delivery, so the time spent adapting the original plan does not increase the overall time the patient has to spend on the treatment couch. As a consequence, the effective time allotted for plan adaptation is drastically reduced. For the 0.25, 0.5, and 0.75 cm anatomical deformations, the treatment time was increased by only 2, 4, and 6 s, respectively, as compared to no plan adaptation. For the anatomical deformation of 1.0 cm the time increase was substantially larger. The anatomical deformation of 1.0 cm represents an extreme case, which is rarely observed for the prostate, and again demonstrates the limit of this approach. ARD shows great potential for an online adaptive method with minimal extension of treatment time.


Asunto(s)
Algoritmos , Simulación por Computador , Modelos Anatómicos , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Masculino , Próstata/anatomía & histología , Dosificación Radioterapéutica
10.
Med Phys ; 44(1): 240-248, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28102944

RESUMEN

INTRODUCTION: We present a Trajectory-based Volumetric Modulated Arc Therapy (TVMAT) technique for Stereotactic Radiosurgery (SRS) that takes advantage of a modern linacs ability to modulate dose rate and move the couch dynamically. In addition, we investigate the quality of the developed TVMAT method and the dosimetric accuracy of the technique. METHODS: The main feature of the TVMAT technique is a standard beam trajectory formed by dynamic motion of the treatment couch and the linac gantry. The couch rotates slowly through 180 degrees while the gantry delivers radiation through continuous sweeps of the gantry. The number of partial arcs that constitute the trajectory can be varied between two and eight and as the number of partial arcs increases, the trajectory more finely samples 4π geometry. Along these trajectories, the multi-leaf collimator (MLC) and dose rate are optimized through an inverse planning framework. The TVMAT method was tested on ten cranial SRS patients who were previously treated with the Dynamic Conformal Arc (DCA) technique. The plans were compared with the DCA and a four- arc VMAT technique with regards to dose to the OAR, dose falloff, V12Gy, and V4Gy. Validation measurements were performed using ion-chamber and Gafchromic film. In addition, the trajectory-log files were analyzed and compared with the treatment plan beam data. RESULTS: The TVMAT treatment plans were successfully delivered with a treatment time between 3-8 min which mostly depended on total cumulated dose. Ion chamber measurements had an average measured error of 1.1 ± 0.6% and a maximum value of 2.2% of the delivered dose. The 2%, 2 mm gamma pass rates for the film measurements were 96% or greater. In a preliminary comparison of ten patients who underwent SRS treatments with the DCA technique, the TVMAT and VMAT techniques were able to produce plans with comparable dose falloff and OAR doses, while achieving better dose conformality, V4Gy and V12Gy when compared to the original DCA plans. The improvement of the TVMAT plans were as follows (mean % improvement ± standard err): Conformity (10 ± 2%), V4 (20 ± 20%), V12 (27 ± 10%), volume weighted mean dose to organs at risk (13 ± 13%), homogeneity index (2 ± 2%) and falloff (4 ± 2%). CONCLUSION: We have developed and validated a trajectory-based dose delivery method which has dose distribution improvements while having a treatment time of 3-8 min. In addition, it has the potential for a simpler planning experience while maintaining an accurate delivery on the Varian Truebeam Linac.


Asunto(s)
Radiocirugia/métodos , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada
11.
Med Phys ; 33(10): 3666-79, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17089832

RESUMEN

This work introduces an EGSnrc-based Monte Carlo (MC) beamlet does distribution matrix into a direct aperture optimization (DAO) algorithm for IMRT inverse planning. The technique is referred to as Monte Carlo-direct aperture optimization (MC-DAO). The goal is to assess if the combination of accurate Monte Carlo tissue inhomogeneity modeling and DAO inverse planning will improve the dose accuracy and treatment efficiency for treatment planning. Several authors have shown that the presence of small fields and/or inhomogeneous materials in IMRT treatment fields can cause dose calculation errors for algorithms that are unable to accurately model electronic disequilibrium. This issue may also affect the IMRT optimization process because the dose calculation algorithm may not properly model difficult geometries such as targets close to low-density regions (lung, air etc.). A clinical linear accelerator head is simulated using BEAMnrc (NRC, Canada). A novel in-house algorithm subdivides the resulting phase space into 2.5 X 5.0 mm2 beamlets. Each beamlet is projected onto a patient-specific phantom. The beamlet dose contribution to each voxel in a structure-of-interest is calculated using DOSXYZnrc. The multileaf collimator (MLC) leaf positions are linked to the location of the beamlet does distributions. The MLC shapes are optimized using direct aperture optimization (DAO). A final Monte Carlo calculation with MLC modeling is used to compute the final dose distribution. Monte Carlo simulation can generate accurate beamlet dose distributions for traditionally difficult-to-calculate geometries, particularly for small fields crossing regions of tissue inhomogeneity. The introduction of DAO results in an additional improvement by increasing the treatment delivery efficiency. For the examples presented in this paper the reduction in the total number of monitor units to deliver is approximately 33% compared to fluence-based optimization methods.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/instrumentación , Radioterapia de Intensidad Modulada/métodos , Algoritmos , Simulación por Computador , Cabeza/diagnóstico por imagen , Cabeza/patología , Humanos , Modelos Teóricos , Método de Montecarlo , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/patología , Aceleradores de Partículas , Fantasmas de Imagen , Lenguajes de Programación , Radiografía , Dosificación Radioterapéutica
12.
Med Phys ; 32(1): 12-8, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15719949

RESUMEN

Accurate measurements of the penumbra region are important for the proper modeling of the radiation beam for linear accelerator-based intensity modulated radiation therapy. The usual data collection technique with a standard ionization chamber artificially broadens the measured beam penumbrae due to volume effects. The larger the chamber, the greater is the spurious increase in penumbra width. This leads to inaccuracies in dose calculations of small fields, including small fields or beam segments used in IMRT. This source of error can be rectified by the use of film dosimetry for penumbra measurements because of its high spatial resolution. The accuracy of IMRT calculations with a pencil beam convolution model in a commercial treatment planning system was examined using commissioning data with and without the benefit of film dosimetry of the beam penumbrae. A set of dose-spread kernels of the pencil beam model was calculated based on commissioning data that included beam profiles gathered with a 0.6-cm-i.d. ionization chamber. A second set of dose-spread kernels was calculated using the same commissioning data with the exception of the penumbrae, which were measured with radiographic film. The average decrease in the measured width of the 80%-20% penumbrae of various square fields of size 3-40 cm, at 5 cm depth in water-equivalent plastic was 0.27 cm. Calculations using the pencil beam model after it was re-commissioned using film dosimetry of the penumbrae gave better agreement with measurements of IMRT fields, including superior reproduction of high dose gradient regions and dose extrema. These results show that accurately measuring the beam penumbrae improves the accuracy of the dose distributions predicted by the treatment planning system and thus is important when commissioning beam models used for IMRT.


Asunto(s)
Dosimetría por Película/métodos , Radioterapia Conformacional/instrumentación , Radioterapia Conformacional/métodos , Humanos , Aceleradores de Partículas , Fantasmas de Imagen , Fotones , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Película para Rayos X
13.
Int J Radiat Oncol Biol Phys ; 92(5): 1148-1156, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26050608

RESUMEN

PURPOSE: To develop planning and delivery capabilities for linear accelerator-based nonisocentric trajectory modulated arc therapy (TMAT) and to evaluate the benefit of TMAT for accelerated partial breast irradiation (APBI) with the patient in prone position. METHODS AND MATERIALS: An optimization algorithm for volumetrically modulated arc therapy (VMAT) was generalized to allow for user-defined nonisocentric TMAT trajectories combining couch rotations and translations. After optimization, XML scripts were automatically generated to program and subsequently deliver the TMAT plans. For 10 breast patients in the prone position, TMAT and 6-field noncoplanar intensity modulated radiation therapy (IMRT) plans were generated under equivalent objectives and constraints. These plans were compared with regard to whole breast tissue volume receiving more than 100%, 80%, 50%, and 20% of the prescription dose. RESULTS: For TMAT APBI, nonisocentric collision-free horizontal arcs with large angular span (251.5 ± 7.9°) were optimized and delivered with delivery time of ∼4.5 minutes. Percentage changes of whole breast tissue volume receiving more than 100%, 80%, 50%, and 20% of the prescription dose for TMAT relative to IMRT were -10.81% ± 6.91%, -27.81% ± 7.39%, -14.82% ± 9.67%, and 39.40% ± 10.53% (P≤.01). CONCLUSIONS: This is a first demonstration of end-to-end planning and delivery implementation of a fully dynamic APBI TMAT. Compared with IMRT, TMAT resulted in marked reduction of the breast tissue volume irradiated at high doses.


Asunto(s)
Algoritmos , Neoplasias de la Mama/radioterapia , Aceleradores de Partículas , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Femenino , Humanos , Mastectomía Segmentaria , Aceleradores de Partículas/instrumentación , Posición Prona , Radiografía , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/instrumentación , Radioterapia de Intensidad Modulada/instrumentación
14.
Int J Radiat Oncol Biol Phys ; 52(2): 544-52, 2002 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11872303

RESUMEN

PURPOSE: To investigate postimplant dosimetry for different regions of the prostate gland in patients treated with transperineal 125Iodine brachytherapy implants for low- and intermediate-risk prostate cancer. METHODS AND MATERIALS: Two hundred eighty-four patients treated with permanent interstitial prostate brachytherapy comprised the study population. A nonuniform, urethral-sparing algorithm was used to plan all patients. Prostate contours were outlined on postimplant CT images. Prostate volumes were then divided into four quadrants: anterior-superior quadrant (ASQ), posterior-superior quadrant (PSQ), anterior-inferior quadrant (AIQ), and posterior-inferior quadrant (PIQ). Dose-volume histograms (DVHs) were calculated for the whole prostate and each quadrant. RESULTS: The mean postimplant V(100) +/- 95% confidence (the percent prostate volume encompassed within the isodose surface comprising the prescription dose = 144 Gy) for the ASQ was 78.5 +/- 1.9, which was significantly lower than that of the PSQ, AIQ, and PIQ in which the V(100) plus minus 95% confidence values were 94.9 +/- 0.8, 92.6 +/- 1.2, and 98.7 +/- 0.3, respectively. The mean V(100) +/- 95% confidence for the whole prostate was 90.4 +/- 0.8. Mean values for V(150) and D(90) (the minimum dose in Gy received by 90% of the target volume) for the four quadrants and the whole prostate showed similar results. CONCLUSIONS: Underdosed areas of the planning target volume (PTV), if present, were largely confined to the ASQ, which received a significantly lower dose, on average, compared to the other three quadrants of the prostate.


Asunto(s)
Braquiterapia/métodos , Próstata , Neoplasias de la Próstata/radioterapia , Anciano , Anciano de 80 o más Años , Intervalos de Confianza , Humanos , Radioisótopos de Yodo/uso terapéutico , Masculino , Persona de Mediana Edad , Próstata/anatomía & histología , Neoplasias de la Próstata/patología , Dosificación Radioterapéutica
15.
Med Phys ; 31(12): 3279-87, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15651610

RESUMEN

Intensity modulated radiation therapy (IMRT) is used to deliver highly conformal radiation doses to tumors while sparing nearby sensitive tissues. Discrepancies between calculated and measured dose distributions have been reported for regions of high dose gradients corresponding to complex radiation fluence patterns. For the single pencil beam convolution dose calculation algorithm, the ability to resolve areas of high dose structure is partly related to the shape of the pencil beam dose kernel (similar to how a photon detector's point spread function relates to imaging resolution). Improvements in dose calculation accuracy have been reported when the treatment planning system (TPS) is recommissioned using high-resolution measurement data as input. This study proposes to improve the dose calculation accuracy for IMRT planning by modifying clinical dose kernel shapes already present in the TPS, thus avoiding the need to reacquire higher resolution commissioning data. The in-house optimization program minimizes a cost-function based on a two-dimensional composite dose subtraction/distance-to-agreement (gamma) analysis. The final modified kernel shapes are reintroduced into the treatment planning system and improvements to the dose calcula tion accuracy for complex IMRT dose distributions evaluated. The central kernel value (radius =0 cm) has the largest effect on the dose calculation resolution and is the focus of this study.


Asunto(s)
Algoritmos , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Programas Informáticos , Diseño de Software
16.
Med Phys ; 29(8): 1823-31, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12201429

RESUMEN

Flexibility and complexity in patient treatment due to advances in radiotherapy techniques necessitates a simple method for evaluating spatial resolution capabilities of the dose delivery device. Our purpose in this investigation is to evaluate a model that describes the ability of a radiation therapy device to deliver a desired dose distribution. The model is based on linear systems theory and is analogous to methods used to describe resolution degradation in imaging systems. A qualitative analysis of spatial resolution degradation using the model is presented in the spatial and spatial frequency domains. The ability of the model to predict the effects of geometric dose conformity to treatment volumes is evaluated by varying multileaf collimator leaf width and magnitude of dose spreading. Dose distributions for three clinical treatment shapes, circular shapes of varying diameter and one intensity modulated shape are used in the evaluation. We show that the model accurately predicts the dependence of dose conformity on these parameters. The spatial resolution capabilities of different radiation therapy devices can be quantified using the model, providing a simple method for comparing different treatment machine characteristics. Also, as different treatment sites have different resolution requirements this model may be used to tailor machine characteristics to the specific site.


Asunto(s)
Modelos Biológicos , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/instrumentación , Radioterapia Conformacional/métodos , Encéfalo/efectos de la radiación , Simulación por Computador , Análisis de Falla de Equipo/métodos , Cabeza/efectos de la radiación , Humanos , Modelos Lineales , Masculino , Cuello/efectos de la radiación , Próstata/efectos de la radiación , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Phys Med Biol ; 47(22): 3997-4017, 2002 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-12476979

RESUMEN

Multileaf collimator (MLC) based intensity modulated radiation therapy (IMRT) techniques are well established but suffer several physical limitations. Dosimetric spatial resolution is limited by the MLC leaf width; interleaf leakage and tongue-and-groove effects degrade dosimetric accuracy and the range of leaf motion limits the maximum deliverable field size. Collimator rotation is used in standard radiation therapy to improve the conformity of the MLC shape to the target volume. Except for opposed orthogonal fields, collimator rotation has not been exploited in IMRT due to the complexity of deriving the MLC leaf configurations for rotated sub-fields. Here we report on a new way that MLC-based IMRT is delivered which incorporates collimator rotation, providing an extra degree of freedom in deriving leaf sequences for a desired fluence map. Specifically, we have developed a series of unique algorithms that are capable of determining rotated MLC segments. These IMRT fields may be delivered statically (with the collimator rotating to a new position in between sub-fields) or dynamically (with the collimator rotating and leaves moving simultaneously during irradiation). This introductory study provides an analysis of the rotating leaf motion calculation algorithms with focus on radiation efficiency, the range of collimator rotation and number of segments. We then evaluate the technique by characterizing the ability of the algorithms to generate rotating leaf sequences for desired fluence maps. Comparisons are also made between our method and conventional sliding window and step-and-shoot techniques. Results show improvements in spatial resolution, reduced interleaf effects and maximum deliverable field size over conventional techniques. Clinical application of these enhancements can be realized immediately with static rotational delivery although improved dosimetric modelling of the MLC will be required for dynamic delivery.


Asunto(s)
Algoritmos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/instrumentación , Radioterapia Conformacional/métodos , Humanos , Control de Calidad , Dosis de Radiación , Radiometría , Reproducibilidad de los Resultados , Rotación , Sensibilidad y Especificidad , Procesos Estocásticos , Enfermedades de la Tiroides/radioterapia , Glándula Tiroides
18.
Phys Med Biol ; 59(17): 4845-59, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25097184

RESUMEN

The goal of this work is to develop an interactive treatment planning platform that permits real-time manipulation of dose distributions including DVHs and other dose metrics. The hypothesis underlying the approach proposed here is that the process of evaluating potential dose distribution options and deciding on the best clinical trade-offs may be separated from the derivation of the actual delivery parameters used for the patient's treatment. For this purpose a novel algorithm for deriving an Achievable Dose Estimate (ADE) was developed. The ADE algorithm is computationally efficient so as to update dose distributions in effectively real-time while accurately incorporating the limits of what can be achieved in practice. The resulting system is a software environment for interactive real-time manipulation of dose that permits the clinician to rapidly develop a fully customized 3D dose distribution. Graphical navigation of dose distributions is achieved by a sophisticated method of identifying contributing fluence elements, modifying those elements and re-computing the entire dose distribution. 3D dose distributions are calculated in ~2-20 ms. Including graphics processing overhead, clinicians may visually interact with the dose distribution (e.g. 'drag' a DVH) and display updates of the dose distribution at a rate of more than 20 times per second. Preliminary testing on various sites shows that interactive planning may be completed in ~1-5 min, depending on the complexity of the case (number of targets and OARs). Final DVHs are derived through a separate plan optimization step using a conventional VMAT planning system and were shown to be achievable within 2% and 4% in high and low dose regions respectively. With real-time interactive planning trade-offs between Target(s) and OARs may be evaluated efficiently providing a better understanding of the dosimetric options available to each patient in static or adaptive RT.


Asunto(s)
Algoritmos , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Dosificación Radioterapéutica
19.
Cancer Treat Rev ; 36(5): 393-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20181430

RESUMEN

Arc therapies have gained widespread clinical interest in radiation oncology over the past decade. Arc therapies have several potential advantages over standard techniques such as intensity-modulated radiation therapy, with implications for patients, administrators, and oncologists. This review focuses on the rationale for arc therapy, descriptions of the modern arc techniques that are currently clinically available, and highlights some distinguishing features of arc therapies, such as dose distributions, treatment times, and imaging capabilities. Arc therapies are exciting examples of progress in radiotherapy through technological innovation, aimed at ultimately improving the therapeutic ratio for patients receiving radiation.


Asunto(s)
Neoplasias/radioterapia , Radioterapia de Intensidad Modulada/métodos , Relación Dosis-Respuesta en la Radiación , Humanos , Resultado del Tratamiento
20.
Int J Radiat Oncol Biol Phys ; 76(1): 287-95, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19775832

RESUMEN

PURPOSE: Volumetric modulated arc therapy (VMAT) is a novel extension of conventional intensity-modulated radiotherapy (cIMRT), in which an optimized three-dimensional dose distribution may be delivered in a single gantry rotation. VMAT is the predecessor to RapidArc (Varian Medical System). This study compared VMAT with cIMRT and with conventional modified wide-tangent (MWT) techniques for locoregional radiotherapy for left-sided breast cancer, including internal mammary nodes. METHODS AND MATERIALS: Therapy for 5 patients previously treated with 50 Gy/25 fractions using nine-field cIMRT was replanned with VMAT and MWT. Comparative endpoints were planning target volume (PTV) dose homogeneity, doses to surrounding structures, number of monitor units, and treatment delivery time. RESULTS: For VMAT, two 190 degrees arcs with 2-cm overlapping jaws were required to optimize over the large treatment volumes. Treatment plans generated using VMAT optimization resulted in PTV homogeneity similar to that of cIMRT and MWT. The average heart volumes receiving >30 Gy for VMAT, cIMRT, and MWT were 2.6% +/- 0.7%, 3.5% +/- 0.8%, and 16.4% +/- 4.3%, respectively, and the average ipsilateral lung volumes receiving >20 Gy were 16.9% +/- 1.1%, 17.3% +/- 0.9%, and 37.3% +/- 7.2%, respectively. The average mean dose to the contralateral medial breast was 3.2 +/- 0.6 Gy for VMAT, 4.3 +/- 0.4 Gy for cIMRT, and 4.4 +/- 4.7 Gy for MWT. The healthy tissue volume percentages receiving 5 Gy were significantly larger with VMAT (33.1% +/- 2.1%) and IMRT (45.3% +/- 3.1%) than with MWT (19.4% +/- 3.7%). VMAT reduced the number of monitor units by 30% and the treatment time by 55% compared with cIMRT. CONCLUSIONS: VMAT achieved similar PTV coverage and sparing of organs at risk, with fewer monitor units and shorter delivery time than cIMRT.


Asunto(s)
Neoplasias de la Mama/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Adulto , Anciano , Algoritmos , Mama , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Colombia Británica , Femenino , Corazón/efectos de la radiación , Humanos , Pulmón/efectos de la radiación , Irradiación Linfática/métodos , Persona de Mediana Edad , Traumatismos por Radiación/prevención & control , Radiografía , Dosificación Radioterapéutica , Tecnología Radiológica , Pared Torácica , Factores de Tiempo , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA