Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Autoimmun ; 50: 59-66, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24387801

RESUMEN

X-box binding protein 1 (XBP1) is a central regulator of the endoplasmic reticulum (ER) stress response. It is induced via activation of the IRE1 stress sensor as part of the unfolded protein response (UPR) and has been implicated in several diseases processes. XBP1 can also be activated in direct response to Toll-like receptor (TLR) ligation independently of the UPR but the pathogenic significance of this mode of XBP1 activation is not well understood. Here we show that TLR-dependent XBP1 activation is operative in the synovial fibroblasts (SF) of patients with active rheumatoid arthritis (RA). We investigated the expression of ER stress response genes in patients with active RA and also in patients in remission. The active (spliced) form of (s)XBP1 was significantly overexpressed in the active RA group compared to healthy controls and patients in remission. Paradoxically, expression of nine other ER stress response genes was reduced in active RA compared to patients in remission, suggestive of a UPR-independent process. However, sXBP1 was induced in SF by TLR4 and TLR2 stimulation, resulting in sXBP1-dependent interleukin-6 and tumour necrosis factor (TNF) production. We also show that TNF itself induces sXBP1 in SF, thus generating a potential feedback loop for sustained SF activation. These data confirm the first link between TLR-dependent XBP1 activation and human inflammatory disease. sXBP1 appears to play a central role in this process by providing a convergence point for two different stimuli to maintain activation of SF.


Asunto(s)
Artritis Reumatoide/inmunología , Proteínas de Unión al ADN/inmunología , Fibroblastos/inmunología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/inmunología , Factores de Transcripción/inmunología , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Comunicación Autocrina , Estudios de Casos y Controles , Proteínas de Unión al ADN/agonistas , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Interleucina-6/genética , Interleucina-6/inmunología , Lipopolisacáridos/farmacología , Cultivo Primario de Células , Factores de Transcripción del Factor Regulador X , Transducción de Señal , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/inmunología , Membrana Sinovial/patología , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/genética , Factores de Transcripción/agonistas , Factores de Transcripción/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/farmacología , Proteína 1 de Unión a la X-Box
2.
Nucleic Acids Res ; 40(16): 7676-89, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22649058

RESUMEN

IκB kinase α (IKKα) is part of the cytoplasmic IKK complex regulating nuclear factor-κB (NF-κB) release and translocation into the nucleus in response to pro-inflammatory signals. IKKα can also be recruited directly to the promoter of NF-κB-dependent genes by NF-κB where it phosphorylates histone H3 at serine 10, triggering recruitment of the bromodomain-containing protein 4 and the positive transcription elongation factor b. Herein, we report that IKKα travels with the elongating form of ribonucleic acid polymerase II together with heterochromatin protein 1 gamma (HP1γ) at NF-κB-dependent genes in activated macrophages. IKKα binds to and phosphorylates HP1γ, which in turn controls IKKα binding to chromatin and phosphorylation of the histone variant H3.3 at serine 31 within transcribing regions. Downstream of transcription end sites, IKKα accumulates with its inhibitor the CUE-domain containing protein 2, suggesting a link between IKKα inactivation and transcription termination.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Quinasa I-kappa B/metabolismo , Macrófagos/metabolismo , Transcripción Genética , Factor de Necrosis Tumoral alfa/genética , Animales , Línea Celular , Células Cultivadas , Quimiocina CCL3/genética , Cromatina/metabolismo , Histonas/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos , Macrófagos/efectos de los fármacos , Ratones , ARN Polimerasa II/metabolismo , Proteínas Represoras/metabolismo
3.
Front Med (Lausanne) ; 6: 45, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941350

RESUMEN

The treatment of rheumatoid arthritis (RA) has been transformed with the introduction of biologic disease modifying anti-rheumatic drugs (bDMARD) and more recently, targeted synthetic DMARD (tsDMARD) therapies in the form of janus-kinase inhibitors. Nevertheless, response to these agents varies such that a trial and error approach is adopted; leading to poor patient quality of life, and long-term outcomes. There is thus an urgent need to identify effective biomarkers to guide treatment selection. A wealth of research has been invested in this field but with minimal progress. Increasingly recognized is the importance of evaluating synovial tissue, the primary site of RA, as opposed to peripheral blood-based investigation. In this mini-review, we summarize the literature supporting synovial tissue heterogeneity, the conceptual basis for stratified therapy. This includes recognition of distinct synovial pathobiological subtypes and associated molecular pathways. We also review synovial tissue studies that have been conducted to evaluate the effect of individual bDMARD and tsDMARD on the cellular and molecular characteristics, with a view to identifying tissue predictors of response. Initial observations are being brought into the clinical trial landscape with stratified biopsy trials to validate toward implementation. Furthermore, development of tissue based omics technology holds still more promise in advancing our understanding of disease processes and guiding future drug selection.

4.
Front Immunol ; 9: 1527, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30022980

RESUMEN

TNFAIP3 encodes the NF-κB regulatory protein A20. High-penetrance heterozygous mutations in TNFAIP3 cause a haploinsufficiency of A20 (HA20), inadequate inhibition of NF-κB pathway, and an early onset autoinflammatory disorder. However, the clinical phenotype of patients with HA20 varies greatly and clinical diagnoses prior to establishing the genetic cause, included both autoimmune and autoinflammatory conditions. Here, we present the first patient with HA20, who was previously diagnosed with AOSD but was later found to have a novel heterozygous variant in TNFAIP3 and who was successfully treated with anti-IL6 receptor biologic tocilizumab (RoActemra). We discovered a novel heterozygous mutation in TNFAIP3 c.1906C>T, not previously found in ExAC database. Further analysis shows that this single-nucleotide variant at the terminal residue of TNFAIP3 exon 7 produces an alternatively spliced mRNA resulting in p.His636fsTer1. Additional genetic analysis of family members shows that this variant does segregate with the inflammatory clinical phenotypes. Subsequent functional test show that NF-κB activation, measured as intracellular phosphorylation of p65 in CD14 + monocytes, was more enhanced in the patient compared with healthy controls (HC) following stimulation with LPS. This was associated with higher production of inflammatory cytokines by the patients PBMC in response to LPS and ATP and enhanced activation of NLRP3 inflammasome complex. Furthermore, increased activation of NLRP3 inflammasome was evident systemically, since we detected higher levels of ASC specks in patients' sera compared with HC. Finally, we used population genetics data from GnomAD to construct a map of both genetic conservation and most probable disease-causing variants in TNFAIP3 which might be found in future cases of HA20.

5.
J Mol Cell Biol ; 5(5): 308-22, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23933634

RESUMEN

Differentiation is a multistep process tightly regulated and controlled by complex transcription factor networks. Here, we show that the rate of differentiation of common myeloid precursor cells increases after depletion of CTCF, a protein emerging as a potential key factor regulating higher-order chromatin structure. We identified CTCF binding in the vicinity of important transcription factors regulating myeloid differentiation and showed that CTCF depletion impacts on the expression of these genes in concordance with the observed acceleration of the myeloid commitment. Furthermore, we observed a loss of the histone variant H2A.Z within the selected promoter regions and an increase in non-coding RNA transcription upstream of these genes. Both abnormalities suggest a global chromatin structure destabilization and an associated increase of non-productive transcription in response to CTCF depletion but do not drive the CTCF-mediated transcription alterations of the neighbouring genes. Finally, we detected a transient eviction of CTCF at the Egr1 locus in correlation with Egr1 peak of expression in response to lipopolysaccharide (LPS) treatment in macrophages. This eviction is also correlated with the expression of an antisense non-coding RNA transcribing through the CTCF-binding region indicating that non-coding RNA transcription could be the cause and the consequence of CTCF eviction.


Asunto(s)
Cromatina/química , Células Mieloides/metabolismo , Proteínas Represoras/deficiencia , Transcripción Genética , Animales , Sitios de Unión , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN Intergénico/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Sitios Genéticos/genética , Histonas/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Células Mieloides/citología , Células Mieloides/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Cohesinas
6.
PLoS One ; 8(3): e59389, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23533622

RESUMEN

The transcriptional activation of the chicken lysozyme gene (cLys) by lipopolysaccharide (LPS) in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR) triggering eviction of the CCCTC-binding factor (CTCF) from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE). In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPß controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3' end of the gene.


Asunto(s)
Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Muramidasa/genética , Muramidasa/metabolismo , FN-kappa B/metabolismo , Regiones Promotoras Genéticas/genética , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Macrófagos/enzimología , Reacción en Cadena en Tiempo Real de la Polimerasa , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA