Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucleic Acids Res ; 48(7): 3553-3566, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32086526

RESUMEN

Developing B cells undergo V(D)J recombination to generate a vast repertoire of Ig molecules. V(D)J recombination is initiated by the RAG1/RAG2 complex in recombination centres (RCs), where gene segments become accessible to the complex. Whether transcription is the causal factor of accessibility or whether it is a side product of other processes that generate accessibility remains a controversial issue. At the IgH locus, V(D)J recombination is controlled by Eµ enhancer, which directs the transcriptional, epigenetic and recombinational events in the IgH RC. Deletion of Eµ enhancer affects both transcription and recombination, making it difficult to conclude if Eµ controls the two processes through the same or different mechanisms. By using a mouse line carrying a CpG-rich sequence upstream of Eµ enhancer and analyzing transcription and recombination at the single-cell level, we found that recombination could occur in the RC in the absence of detectable transcription, suggesting that Eµ controls transcription and recombination through distinct mechanisms. Moreover, while the normally Eµ-dependent transcription and demethylating activities were impaired, recruitment of chromatin remodeling complexes was unaffected. RAG1 was efficiently recruited, thus compensating for the defective transcription-associated recruitment of RAG2, and providing a mechanistic basis for RAG1/RAG2 assembly to initiate V(D)J recombination.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina/genética , Transcripción Genética , Recombinación V(D)J , Alelos , Animales , ADN Helicasas/metabolismo , Metilación de ADN , Elementos de Facilitación Genéticos , Proteínas de Homeodominio/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
2.
PLoS Genet ; 15(2): e1007930, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30779742

RESUMEN

DNA cytosine methylation is involved in the regulation of gene expression during development and its deregulation is often associated with disease. Mammalian genomes are predominantly methylated at CpG dinucleotides. Unmethylated CpGs are often associated with active regulatory sequences while methylated CpGs are often linked to transcriptional silencing. Previous studies on CpG methylation led to the notion that transcription initiation is more sensitive to CpG methylation than transcriptional elongation. The immunoglobulin heavy chain (IgH) constant locus comprises multiple inducible constant genes and is expressed exclusively in B lymphocytes. The developmental B cell stage at which methylation patterns of the IgH constant genes are established, and the role of CpG methylation in their expression, are unknown. Here, we find that methylation patterns at most cis-acting elements of the IgH constant genes are established and maintained independently of B cell activation or promoter activity. Moreover, one of the promoters, but not the enhancers, is hypomethylated in sperm and early embryonic cells, and is targeted by different demethylation pathways, including AID, UNG, and ATM pathways. Combined, the data suggest that, rather than being prominently involved in the regulation of the IgH constant locus expression, DNA methylation may primarily contribute to its epigenetic pre-marking.


Asunto(s)
Metilación de ADN , Genes de las Cadenas Pesadas de las Inmunoglobulinas , Regiones Constantes de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/genética , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Islas de CpG/genética , Citosina/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Activación de Linfocitos/genética , Ratones , Regiones Promotoras Genéticas
3.
Proc Natl Acad Sci U S A ; 116(29): 14708-14713, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31266889

RESUMEN

B cell isotype switching plays an important role in modulating adaptive immune responses. It occurs in response to specific signals that often induce different isotype (I) promoters driving transcription of switch regions, located upstream of the Ig heavy chain (IgH) constant genes. The transcribed switch regions can recombine, leading to a change of the constant gene and, consequently, of antibody isotype. Switch transcription is controlled by the superenhancer 3' regulatory region (3'RR) that establishes long-range chromatin cis-interactions with I promoters. Most stimuli induce more than one I promoter, and switch transcription can occur on both chromosomes. Therefore, it is presently unknown whether induced I promoters compete for the 3'RR on the same chromosome. Here we performed single-chromosome RT-qPCR assays to examine switch transcription monoallelically in the endogenous context. We show that there are two modes of 3'RR-mediated activation of I promoters: coactivation and competition. The nature of the inducing signal plays a pivotal role in determining the mode of activation. Furthermore, we provide evidence that, in its endogenous setting, the 3'RR has a bidirectional activity. We propose that the coactivation and competition modes mediated by the 3'RR may have evolved to cope with the different kinetics of primary immune responses.


Asunto(s)
Inmunidad Adaptativa , Linfocitos B/inmunología , Elementos de Facilitación Genéticos/genética , Cambio de Clase de Inmunoglobulina/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Regiones no Traducidas 3'/genética , Alelos , Animales , Linfocitos B/metabolismo , Células Cultivadas , Elementos de Facilitación Genéticos/inmunología , Femenino , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Pesadas de Inmunoglobulina/metabolismo , Masculino , Ratones , Cultivo Primario de Células , Regiones Promotoras Genéticas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Genética/inmunología
4.
Proc Natl Acad Sci U S A ; 115(41): 10357-10362, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30257940

RESUMEN

PAX5 is a well-known haploinsufficient tumor suppressor gene in human B-cell precursor acute lymphoblastic leukemia (B-ALL) and is involved in various chromosomal translocations that fuse a part of PAX5 with other partners. However, the role of PAX5 fusion proteins in B-ALL initiation and transformation is ill-known. We previously reported a new recurrent t(7;9)(q11;p13) chromosomal translocation in human B-ALL that juxtaposed PAX5 to the coding sequence of elastin (ELN). To study the function of the resulting PAX5-ELN fusion protein in B-ALL development, we generated a knockin mouse model in which the PAX5-ELN transgene is expressed specifically in B cells. PAX5-ELN-expressing mice efficiently developed B-ALL with an incidence of 80%. Leukemic transformation was associated with recurrent secondary mutations on Ptpn11, Kras, Pax5, and Jak3 genes affecting key signaling pathways required for cell proliferation. Our functional studies demonstrate that PAX5-ELN affected B-cell development in vitro and in vivo featuring an aberrant expansion of the pro-B cell compartment at the preleukemic stage. Finally, our molecular and computational approaches identified PAX5-ELN-regulated gene candidates that establish the molecular bases of the preleukemic state to drive B-ALL initiation. Hence, our study provides a new in vivo model of human B-ALL and strongly implicates PAX5 fusion proteins as potent oncoproteins in leukemia development.


Asunto(s)
Elastina/genética , Proteínas de Fusión Oncogénica/genética , Factor de Transcripción PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Animales , Linfocitos B/patología , Linfocitos B/fisiología , Elastina/metabolismo , Regulación Leucémica de la Expresión Génica , Técnicas de Sustitución del Gen , Janus Quinasa 3/genética , Ratones Transgénicos , Mutación , Neoplasias Experimentales , Proteínas de Fusión Oncogénica/metabolismo , Factor de Transcripción PAX5/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
5.
Proc Natl Acad Sci U S A ; 114(23): 6092-6097, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533409

RESUMEN

Class switch recombination (CSR) plays an important role in adaptive immune response by enabling mature B cells to switch from IgM expression to the expression of downstream isotypes. CSR is preceded by inducible germline (GL) transcription of the constant genes and is controlled by the 3' regulatory region (3'RR) in a stimulus-dependent manner. Why the 3'RR-mediated up-regulation of GL transcription is delayed to the mature B-cell stage is presently unknown. Here we show that mice devoid of an inducible CTCF binding element, located in the α constant gene, display a marked isotype-specific increase of GL transcription in developing and resting splenic B cells and altered CSR in activated B cells. Moreover, insertion of a GL promoter downstream of the CTCF insulator led to premature activation of the ectopic promoter. This study provides functional evidence that the 3'RR has a developmentally controlled potential to constitutively activate GL promoters but that this activity is delayed, at least in part, by the CTCF insulator, which borders a transcriptionally active domain established by the 3'RR in developing B cells.


Asunto(s)
Factor de Unión a CCCTC/genética , Cadenas Pesadas de Inmunoglobulina/genética , Regiones no Traducidas 3' , Animales , Linfocitos B/metabolismo , Secuencia de Bases , Factor de Unión a CCCTC/metabolismo , Femenino , Células Germinativas , Cambio de Clase de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Transcripción Genética , Regulación hacia Arriba
6.
Front Immunol ; 13: 870933, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651614

RESUMEN

Immunoglobulin class switch recombination (CSR) plays an important role in humoral imm\une responses by changing the effector functions of antibodies. CSR occurs between highly repetitive switch (S) sequences located upstream of immunoglobulin constant gene exons. Switch sequences differ in size, the nature of their repeats, and the density of the motifs targeted by the activation-induced cytidine deaminase (AID), the enzyme that initiates CSR. CSR involves double-strand breaks (DSBs) at the universal Sµ donor region and one of the acceptor S regions. The DSBs ends are fused by the classical non-homologous end-joining (C-NHEJ) and the alternative-NHEJ (A-NHEJ) pathways. Of the two pathways, the A-NHEJ displays a bias towards longer junctional micro-homologies (MHs). The Sµ region displays features that distinguish it from other S regions, but the molecular basis of Sµ specificity is ill-understood. We used a mouse line in which the downstream Sγ3 region was put under the control of the Eµ enhancer, which regulates Sµ, and analyzed its recombination activity by CSR-HTGTS. Here, we show that provision of Eµ enhancer to Sγ3 is sufficient to confer the recombinational features of Sµ to Sγ3, including efficient AID recruitment, enhanced internal deletions and robust donor function in CSR. Moreover, junctions involving Sγ3 display a bias for longer MH irrespective of sequence homology with switch acceptor sites. The data suggest that the propensity for increased MH usage is an intrinsic property of Sγ3 sequence, and that the tandem repeats of the donor site influence the choice of the A-NHEJ.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Cambio de Clase de Inmunoglobulina , Animales , Reordenamiento Génico , Cambio de Clase de Inmunoglobulina/genética , Isotipos de Inmunoglobulinas/genética , Ratones , Secuencias Repetidas en Tándem
7.
Adv Immunol ; 147: 89-137, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32981636

RESUMEN

Class switch recombination (CSR) plays an important role in humoral immunity by generating antibodies with different effector functions. CSR to a particular antibody isotype is induced by external stimuli, and occurs between highly repetitive switch (S) sequences. CSR requires transcription across S regions, which generates long non-coding RNAs and secondary structures that promote accessibility of S sequences to activation-induced cytidine deaminase (AID). AID initiates DNA double-strand breaks (DSBs) intermediates that are repaired by general DNA repair pathways. Switch transcription is controlled by various regulatory elements, including enhancers and insulators. The current paradigm posits that transcriptional control of CSR involves long-range chromatin interactions between regulatory elements and chromatin loops-stabilizing factors, which promote alignment of partner S regions in a CSR centre (CSRC) and initiation of CSR. In this review, we focus on the role of IgH transcriptional control elements in CSR and the chromatin-based mechanisms underlying this control.


Asunto(s)
Linfocitos B/inmunología , Citidina Desaminasa/metabolismo , Cadenas Pesadas de Inmunoglobulina/genética , Animales , Cromatina , Roturas del ADN de Doble Cadena , Humanos , Inmunidad Humoral , Cambio de Clase de Inmunoglobulina , Recombinación Genética
8.
Sci Rep ; 9(1): 18543, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31811188

RESUMEN

Class switch recombination (CSR), which targets exclusively the constant region of the immunoglobulin heavy chain (IgH) locus, plays an important role in humoral immunity by generating different antibody effector functions. The IgH constant locus contains multiple genes controlled by isotype (I) promoters induced by extracellular signals that activate specific I promoters, leading to B cell commitment. However, it is unknown whether after initial commitment to one promoter, non-responsive I promoters are irreversibly silent or if they can be activated after exposure to their specific inducers. Here, we studied the murine cell line CH12, which is committed to produce IgA in response to TGF-ß. We show that, although other promoters than Iα are transcriptionally inactive, they are not irreversibly silent. Following deletion of the committed Iα promoter by CRISPR/Cas9, other I promoters display a complex transcriptional pattern largely dependent on the initial committing signal.


Asunto(s)
Cambio de Clase de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/genética , Isotipos de Inmunoglobulinas/genética , Recombinación Genética , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Edición Génica , Ratones , Regiones Promotoras Genéticas/genética , Eliminación de Secuencia
9.
Sci Rep ; 8(1): 9164, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29907762

RESUMEN

During an adaptive immune response, B cells can change their surface immunoglobulins from IgM to IgG, IgE or IgA through a process called class switch recombination (CSR). Switching is preceded by inducible non-coding germline transcription (GLT) of the selected constant gene(s), which is largely controlled by a super-enhancer called the 3' regulatory region (3'RR). Despite intense efforts, the precise mechanisms that regulate GLT are still elusive. In order to gain additional insights into these mechanisms, we analyzed GLT and CSR in mutant B cells carrying a duplication of the promoter of the α constant gene (Iα) downstream of 3'RR. Duplication of the Iα promoter affected differently GLT and CSR. While for most isotypes a drop in GLT was accompanied by a decrease in CSR, that was not the case for switching to IgA, which diminished despite unchanged GLT. Unexpectedly, there was no obvious effect on GLT and CSR to IgG3. Remarkably, specific stimuli that normally induce switching to IgG2b had contrasting effects in mutant B cells; Iγ2b was now preferentially responsive to the stimulus that induced Iα promoter. We propose that one mechanism underlying the induced 3'RR-mediated activation of GL promoters involves, at least in part, specific transcription factories.


Asunto(s)
Región de Flanqueo 3'/inmunología , Linfocitos B/inmunología , Cambio de Clase de Inmunoglobulina , Cadenas Pesadas de Inmunoglobulina , Elementos de Respuesta , Animales , Linfocitos B/citología , Cambio de Clase de Inmunoglobulina/genética , Cambio de Clase de Inmunoglobulina/inmunología , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Ratones , Ratones Mutantes
11.
Rev. bras. farmacogn ; 28(4): 457-467, July-Aug. 2018. graf
Artículo en Inglés | LILACS | ID: biblio-958892

RESUMEN

Abstract Zeaxanthin, an abundant carotenoid present in fruits, vegetables and algae was reported to exert antiproliferative activity and induce apoptosis in human uveal melanoma cells. It also inhibited uveal melanoma tumor growth and cell migration in nude mice xenograft models. Here we report that zeaxanthin purified from the rhodophyte Porphyridium purpureum (Bory) K.M.Drew & R.Ross, Porphyridiaceae, promotes apoptosis in the A2058 human melanoma cell line expressing the oncogenic BRAF V600E mutation. Zeaxanthin 40 µM (IC50) induced chromatin condensation, nuclear blebbing, hypodiploidy, accumulation of cells in sub-G1 phase, DNA internucleosomal fragmentation and activation of caspase-3. Western blot analysis revealed that zeaxanthin induced up-regulation of the pro-apoptotic factors Bim and Bid and inhibition of NF-κB transactivation. Additionally, zeaxanthin sensitized A2058 melanoma cells in vitro to the cytotoxic activity of vemurafenib, a BRAF inhibitor widely used for the clinical management of melanoma, suggesting its potential interest as dietary adjuvant increasing melanoma cells sensitivity to chemotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA