Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Environ Health ; 22(1): 87, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098045

RESUMEN

BACKGROUND: Exposure to per- and poly-fluoroalkyl substances (PFAS) has been associated with significant alterations in female reproductive health. These include changes in menstrual cyclicity, timing of menarche and menopause, and fertility outcomes, as well as increased risk of endometriosis, all of which may contribute to an increased risk of endometrial cancer. The effect of PFAS on endometrial cancer cells, specifically altered treatment response and biology, however, remains poorly studied. Like other gynecologic malignancies, a key contributor to lethality in endometrial cancer is resistance to chemotherapeutics, specifically to platinum-based agents that are used as the standard of care for patients with advanced-stage and/or recurrent disease. OBJECTIVES: To explore the effect of environmental exposures, specifically PFAS, on platinum-based chemotherapy response and mitochondrial function in endometrial cancer. METHODS: HEC-1 and Ishikawa endometrial cancer cells were exposed to sub-cytotoxic nanomolar and micromolar concentrations of PFAS/PFAS mixtures and were treated with platinum-based chemotherapy. Survival fraction was measured 48-h post-chemotherapy treatment. Mitochondrial membrane potential was evaluated in both cell lines following exposure to PFAS ± chemotherapy treatment. RESULTS: HEC-1 and Ishikawa cells displayed differing outcomes after PFAS exposure and chemotherapy treatment. Cells exposed to PFAS appeared to be less sensitive to carboplatin, with instances of increased survival fraction, indicative of platinum resistance, observed in HEC-1 cells. In Ishikawa cells treated with cisplatin, PFAS mixture exposure significantly decreased survival fraction. In both cell lines, increases in mitochondrial membrane potential were observed post-PFAS exposure ± chemotherapy treatment. DISCUSSION: Exposure of endometrial cancer cell lines to PFAS/PFAS mixtures had varying effects on response to platinum-based chemotherapies. Increased survival fraction post-PFAS + carboplatin treatment suggests platinum resistance, while decreased survival fraction post-PFAS mixture + cisplatin exposure suggests enhanced therapeutic efficacy. Regardless of chemotherapy sensitivity status, mitochondrial membrane potential findings suggest that PFAS exposure may affect endometrial cancer cell mitochondrial functioning and should be explored further.


Asunto(s)
Neoplasias Endometriales , Fluorocarburos , Femenino , Humanos , Carboplatino/toxicidad , Carboplatino/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Platino (Metal)/uso terapéutico , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/inducido químicamente , Línea Celular
2.
Nano Lett ; 21(1): 344-352, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33301689

RESUMEN

Limited tumor nanoparticle accumulation remains one of the main challenges in cancer nanomedicine. Here, we demonstrate that subtherapeutic photodynamic priming (PDP) enhances the accumulation of nanoparticles in subcutaneous murine prostate tumors ∼3-5-times without inducing cell death, vascular destruction, or tumor growth delay. We also found that PDP resulted in an ∼2-times decrease in tumor collagen content as well as a significant reduction of extracellular matrix density in the subendothelial zone. Enhanced nanoparticle accumulation combined with the reduced extravascular barriers improved therapeutic efficacy in the absence of off-target toxicity, wherein 5 mg/kg of Doxil with PDP was equally effective in delaying tumor growth as 15 mg/kg of Doxil. Overall, this study demonstrates the potential of PDP to enhance tumor nanomedicine accumulation and alleviate tumor desmoplasia without causing cell death or vascular destruction, highlighting the utility of PDP as a minimally invasive priming strategy that can improve therapeutic outcomes in desmoplastic tumors.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Antineoplásicos/uso terapéutico , Masculino , Ratones , Nanomedicina , Neoplasias/tratamiento farmacológico
3.
Mol Pharm ; 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34965727

RESUMEN

Theranostic nanoparticles aim to integrate diagnostic imaging and therapy to facilitate image-guided treatment protocols. Herein, we present a theranostic nanotexaphyrin for prostate-specific membrane antigen (PSMA)-targeted radionuclide imaging and focal photodynamic therapy (PDT) accomplished through the chelation of metal isotopes (In, Lu). To realize nanotexaphyrin's theranostic properties, we developed a rapid and robust 111In/Lu-nanotexaphyrin radiolabeling method using a microfluidic system that achieved a high radiochemical yield (>90%). The optimized metalated nanotexaphyrin displayed excellent chemical, photo, and colloidal stabilities, potent singlet oxygen generation, and favorable plasma circulation half-life in vivo (t1/2 = 6.6 h). Biodistribution, including tumor accumulation, was characterized by NIR fluorescence, SPECT/CT imaging, and γ counting. Inclusion of the PSMA-targeting ligand enabled the preferential accumulation of 111In/Lu-nanotexaphyrin in PSMA-positive (PSMA+) prostate tumors (3.0 ± 0.3%ID/g) at 48 h with tumor vs prostate in a 2.7:1 ratio. In combination with light irradiation, the PSMA-targeting nanotexaphyrin showed a potent PDT effect and successfully inhibited PSMA+ tumor growth in a subcutaneous xenograft model. To the best of our knowledge, this study is the first demonstration of the inherent metal chelation-driven theranostic capabilities of texaphyrin nanoparticles, which, in combination with PSMA targeting, enabled prostate cancer imaging and therapy.

4.
Acc Chem Res ; 52(5): 1265-1274, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31021599

RESUMEN

The sun is the most abundant source of energy on earth. Phototrophs have discovered clever strategies to harvest this light energy and convert it to chemical energy for biomass production. This is achieved in light-harvesting complexes, or antennas, that funnel the exciton energy into the reaction centers. Antennas contain an array of chlorophylls, linear tetrapyrroles, and carotenoid pigments spatially controlled by neighboring proteins. This fine-tuned regulation of protein-pigment arrangements is crucial for survival in the conditions of both excess and extreme light deficit. Photomedicine and photodiagnosis have long been utilizing naturally derived and synthetic monomer dyes for imaging, photodynamic and photothermal therapy; however, the precise regulation of damage inflicted by these therapies requires more complex architectures. In this Account, we discuss how two mechanisms found in photosynthetic systems, photoprotection and light harvesting, have inspired scientists to create nanomedicines for more effective and precise phototherapies. Researchers have been recapitulating natural photoprotection mechanisms by utilizing carotenoids and other quencher molecules toward the design of photodynamic molecular beacons (PDT beacons) for disease-specific photoactivation. We highlight the seminal studies describing peptide-linked porphyrin-carotenoid PDT beacons, which are locally activated by a disease-specific enzyme. Examples of more advanced constructs include tumor-specific mRNA-activatable and polyionic cell-penetrating PDT beacons. An alternative approach toward harnessing photosynthetic processes for biomedical applications includes the design of various nanostructures. This Account will primarily focus on organic lipid-based micro- and nanoparticles. The phenomenon of nonphotochemical quenching, or excess energy release in the form of heat, has been widely explored in the context of porphyrin-containing nanomedicines. These quenched nanostructures can be implemented toward photoacoustic imaging and photothermal therapy. Upon nanostructure disruption, as a result of tissue accumulation and subsequent cell uptake, activatable fluorescence imaging and photodynamic therapy can be achieved. Alternatively, processes found in nature for light harvesting under dim conditions, such as in the deep sea, can be harnessed to maximize light absorption within the tissue. Specifically, high-ordered dye aggregation that results in a bathochromic shift and increased absorption has been exploited for the collection of more light with longer wavelengths, characterized by maximum tissue penetration. Overall, the profound understanding of photosynthetic systems combined with rapid development of nanotechnology has yielded a unique field of nature-inspired photomedicine, which holds promise toward more precise and effective phototherapies.


Asunto(s)
Carotenoides/uso terapéutico , Liposomas/química , Nanomedicina/métodos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Porfirinas/uso terapéutico , Animales , Biomimética/métodos , Carotenoides/química , Carotenoides/efectos de la radiación , Pollos , Luz , Lipoproteínas HDL/química , Liposomas/efectos de la radiación , Ratones , Nanopartículas/efectos de la radiación , Neoplasias/diagnóstico por imagen , Fotosíntesis , Porfirinas/química , Porfirinas/efectos de la radiación
5.
Bioconjug Chem ; 29(11): 3746-3756, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30350576

RESUMEN

We describe a simple and effective bioconjugation strategy to extend the plasma circulation of a low molecular weight targeted phototheranostic agent, which achieves high tumor accumulation (9.74 ± 2.26%ID/g) and high tumor-to-background ratio (10:1). Long-circulating pyropheophorbide (LC-Pyro) was synthesized with three functional building blocks: (1) a porphyrin photosensitizer for positron-emission tomography (PET)/fluorescence imaging and photodynamic therapy (PDT), (2) a urea-based prostate-specific membrane antigen (PSMA) targeting ligand, and (3) a peptide linker to prolong the plasma circulation time. With porphyrin's copper-64 chelating and optical properties, LC-Pyro demonstrated its dual-modality (fluorescence/PET) imaging potential for selective and quantitative tumor detection in subcutaneous, orthotopic, and metastatic murine models. The peptide linker in LC-Pyro prolonged its plasma circulation time about 8.5 times compared to its truncated analog. High tumor accumulation of LC-Pyro enabled potent PDT, which resulted in significantly delayed tumor growth in a subcutaneous xenograft model. This approach can be applied to improve the pharmacokinetics of existing and future targeted PDT agents for enhanced tumor accumulation and treatment efficacy.


Asunto(s)
Clorofila/análogos & derivados , Radioisótopos de Cobre/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/uso terapéutico , Antígeno Prostático Específico/análisis , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Clorofila/química , Clorofila/farmacocinética , Clorofila/uso terapéutico , Radioisótopos de Cobre/química , Radioisótopos de Cobre/farmacocinética , Masculino , Ratones , Ratones Desnudos , Imagen Óptica/métodos , Péptidos/química , Péptidos/farmacocinética , Péptidos/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacocinética , Porfirinas/química , Porfirinas/farmacocinética , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/patología , Nanomedicina Teranóstica/métodos
7.
Methods ; 130: 23-35, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28743635

RESUMEN

Despite the significant advancement achieved in understanding the molecular mechanisms responsible for cancer transformation and aberrant proliferation, leading to novel targeted cancer therapies, significant effort is still needed to "personalize" cancer treatment. Molecular imaging is an emerging field that has shown the ability to characterize in vivo the molecular pathways present at the cancer cell level, enabling diagnosis and personalized treatment of malignancies. These technologies, particularly SPECT and PET also permit the development of novel radiotheranostic probes, which provide capabilities for diagnosis and treatment with the same agent. The small therapeutic index of most anticancer agents is a limitation in the drug development process. Incorporation of molecular imaging in clinical research may help in overcoming this limitation and favouring selection of patient populations most likely to achieve benefit from targeted therapy. This review will focus on two of the most advanced theranostic approaches with promising potential for application in the clinic: 1) therapeutic monoclonal antibodies which may be linked to a radionuclide for SPECT or PET imaging to guide cancer diagnosis, staging, molecular characterization, and assessment of the response to treatment and 2) multifunctional nanotechnology that allows image guided drug delivery through encapsulation of multiple therapeutic, targeting and imaging agents into a single nanoparticle. Porphysome, a liposome-like nanoparticle, is an example of a novel and promising application of nanotechnology for cancer diagnosis and treatment. These technologies have proven to be effective in preclinical models, warranting further clinical investigation to advance their application for the benefit of cancer patients.


Asunto(s)
Antineoplásicos Inmunológicos/administración & dosificación , Descubrimiento de Drogas/tendencias , Imagen Molecular/tendencias , Nanopartículas/administración & dosificación , Nanotecnología/tendencias , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/metabolismo , Descubrimiento de Drogas/métodos , Humanos , Inmunoconjugados/administración & dosificación , Inmunoconjugados/química , Inmunoconjugados/metabolismo , Imagen Molecular/métodos , Nanopartículas/química , Nanopartículas/metabolismo , Nanotecnología/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Radioisótopos/administración & dosificación , Radioisótopos/química , Radioisótopos/metabolismo
8.
Prostate ; 76(13): 1169-81, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27198587

RESUMEN

BACKGROUND: The Magnetic Resonance Imaging (MRI)-guided focal laser therapy has shown early promise in Phase 1 trial treating low/intermediate-risk localized prostate cancer (PCa), but the lack of tumor selectivity and low efficiency of heat generation remain as drawbacks of agent-free laser therapy. Intrinsic multifunctional porphyrin-nanoparticles (porphysomes) have been exploited to treat localized PCa by MRI-guided focal photothermal therapy (PTT) with significantly improved efficiency and tumor selectivity over prior methods of PTT, providing an effective and safe alternative to active surveillance or radical therapy. METHODS: The tumor accumulation of porphysomes chelated with copper-64 was determined and compared with the clinic standard (18) F-FDG in an orthotropic PCa mouse model by positron emission tomography (PET) imaging, providing quantitative assessment for PTT dosimetry. The PTT was conducted with MRI-guided light delivery and monitored by MR thermometry, mimicking the clinical protocol. The efficacy of treatment and adverse effects to surround tissues were evaluated by histology analysis and tumor growth in survival study via MRI. RESULTS: Porphysomes showed superior tumor-to-prostate selectivity over (18) F-FDG (6:1 vs. 0.36:1). MR thermometry detected tumor temperature increased to ≥55°C within 2 min (671 nm at 500 mW), but minimal increase in surrounding tissues. Porphysome enabled effective PTT eradication of tumor without damaging adjacent organs in orthotropic PCa mouse model. CONCLUSIONS: Porphysome-enabled MRI-guided focal PTT could be an effective and safe approach to treat PCa at low risk of progression, thus addressing the significant unmet clinical needs and benefiting an ever-growing number of patients who may be over-treated and risk unnecessary side effects from radical therapies. Prostate 76:1169-1181, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Calor/uso terapéutico , Imagen por Resonancia Magnética/métodos , Nanopartículas/administración & dosificación , Fototerapia/métodos , Neoplasias de la Próstata/terapia , Animales , Fluorodesoxiglucosa F18/administración & dosificación , Masculino , Ratones , Ratones Desnudos , Neoplasias de la Próstata/patología , Termometría/métodos
9.
Angew Chem Int Ed Engl ; 55(21): 6187-91, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27071806

RESUMEN

The discovery and synthesis of novel multifunctional organic building blocks for nanoparticles is challenging. Texaphyrin macrocycles are capable and multifunctional chelators. However, they remain elusive as building blocks for nanoparticles because of the difficulty associated with synthesis of texaphyrin constructs capable of self-assembly. A novel manganese (Mn)-texaphyrin-phospholipid building block is described, along with its one-pot synthesis and self-assembly into a Mn-nanotexaphyrin. This nanoparticle possesses strong resilience to manganese dissociation, structural stability, in vivo bio-safety, and structure-dependent T1 and T2 relaxivities. Magnetic resonance imaging (MRI) contrast enhanced visualization of lymphatic drainage is demonstrated with respect to proximal lymph nodes on the head and neck VX-2 tumors of a rabbit. Synthesis of 17 additional metallo-texaphyrin building blocks suggests that this novel one-pot synthetic procedure for nanotexaphyrins may lead to a wide range of applications in the field of nanomedicines.

10.
Photochem Photobiol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849970

RESUMEN

Resistance to platinum-based chemotherapies remains a significant challenge in advanced-stage high-grade serous ovarian carcinoma, and patients with malignant ascites face the poorest outcomes. It is, therefore, important to understand the effects of ascites, including the associated fluid shear stress (FSS), on phenotypic changes and therapy response, specifically FSS-induced chemotherapy resistance and the underlying mechanisms in ovarian cancer. This study investigated the effects of FSS on response to cisplatin, a platinum-based chemotherapy, and doxorubicin, an anthracycline, both of which are commonly used to manage advanced-stage ovarian cancer. Consistent with prior research, OVCAR-3 and Caov-3 cells cultivated under FSS demonstrated significant resistance to cisplatin. Examination of the role of mitochondria revealed an increase in mitochondrial DNA copy number and intracellular ATP content in cultures grown under FSS, suggesting that changes in mitochondria number and metabolic activity may contribute to platinum resistance. Interestingly, no resistance to doxorubicin was observed under FSS, the first such observation of a lack of resistance under these conditions. Finally, this study demonstrated the potential of photodynamic priming using benzoporphyrin derivative, a clinically approved photosensitizer that localizes in part to mitochondria and endoplasmic reticula, to enhance the efficacy of cisplatin, but not doxorubicin, thereby overcoming FSS-induced platinum resistance.

11.
Adv Sci (Weinh) ; 11(4): e2304453, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38032129

RESUMEN

Microbubble-enabled focused ultrasound (MB-FUS) has revolutionized nano and molecular drug delivery capabilities. Yet, the absence of longitudinal, systematic, quantitative studies of microbubble shell pharmacokinetics hinders progress within the MB-FUS field. Microbubble radiolabeling challenges contribute to this void. This barrier is overcome by developing a one-pot, purification-free copper chelation protocol able to stably radiolabel diverse porphyrin-lipid-containing Definity® analogues (pDefs) with >95% efficiency while maintaining microbubble physicochemical properties. Five tri-modal (ultrasound-, positron emission tomography (PET)-, and fluorescent-active) [64 Cu]Cu-pDefs are created with varying lipid acyl chain length and charge, representing the most prevalently studied microbubble compositions. In vitro, C16 chain length microbubbles yield 2-3x smaller nanoprogeny than C18 microbubbles post FUS. In vivo, [64 Cu]Cu-pDefs are tracked in healthy and 4T1 tumor-bearing mice ± FUS over 48 h qualitatively through fluorescence imaging (to characterize particle disruption) and quantitatively through PET and γ-counting. These studies reveal the impact of microbubble composition and FUS on microbubble dissolution rates, shell circulation, off-target tissue retention (predominantly the liver and spleen), and FUS enhancement of tumor delivery. These findings yield pharmacokinetic microbubble structure-activity relationships that disrupt conventional knowledge, the implications of which on MB-FUS platform design, safety, and nanomedicine delivery are discussed.


Asunto(s)
Microburbujas , Neoplasias , Ratones , Animales , Cobre , Ultrasonografía , Lípidos/química
12.
ACS Nano ; 17(9): 7979-8003, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37129253

RESUMEN

Tumoricidal photodynamic (PDT) and photothermal (PTT) therapies harness light to eliminate cancer cells with spatiotemporal precision by either generating reactive oxygen species or increasing temperature. Great strides have been made in understanding biological effects of PDT and PTT at the cellular, vascular and tumor microenvironmental levels, as well as translating both modalities in the clinic. Emerging evidence suggests that PDT and PTT may synergize due to their different mechanisms of action, and their nonoverlapping toxicity profiles make such combination potentially efficacious. Moreover, PDT/PTT combinations have gained momentum in recent years due to the development of multimodal nanoplatforms that simultaneously incorporate photodynamically- and photothermally active agents. In this review, we discuss how combining PDT and PTT can address the limitations of each modality alone and enhance treatment safety and efficacy. We provide an overview of recent literature featuring dual PDT/PTT nanoparticles and analyze the strengths and limitations of various nanoparticle design strategies. We also detail how treatment sequence and dose may affect cellular states, tumor pathophysiology and drug delivery, ultimately shaping the treatment response. Lastly, we analyze common experimental design pitfalls that complicate preclinical assessment of PDT/PTT combinations and propose rational guidelines to elucidate the mechanisms underlying PDT/PTT interactions.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Terapia Fototérmica , Nanomedicina , Fototerapia , Neoplasias/tratamiento farmacológico , Nanopartículas/uso terapéutico , Línea Celular Tumoral
13.
Photochem Photobiol ; 99(2): 448-468, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36117466

RESUMEN

Ovarian cancer is the most lethal gynecologic malignancy with a stubborn mortality rate of ~65%. The persistent failure of multiline chemotherapy, and significant tumor heterogeneity, has made it challenging to improve outcomes. A target of increasing interest is the mitochondrion because of its essential role in critical cellular functions, and the significance of metabolic adaptation in chemoresistance. This review describes mitochondrial processes, including metabolic reprogramming, mitochondrial transfer and mitochondrial dynamics in ovarian cancer progression and chemoresistance. The effect of malignant ascites, or excess peritoneal fluid, on mitochondrial function is discussed. The role of photodynamic therapy (PDT) in overcoming mitochondria-mediated resistance is presented. PDT, a photochemistry-based modality, involves the light-based activation of a photosensitizer leading to the production of short-lived reactive molecular species and spatiotemporally confined photodamage to nearby organelles and biological targets. The consequential effects range from subcytotoxic priming of target cells for increased sensitivity to subsequent treatments, such as chemotherapy, to direct cell killing. This review discusses how PDT-based approaches can address key limitations of current treatments. Specifically, an overview of the mechanisms by which PDT alters mitochondrial function, and a summary of preclinical advancements and clinical PDT experience in ovarian cancer are provided.


Asunto(s)
Neoplasias Ováricas , Fotoquimioterapia , Femenino , Humanos , Resistencia a Antineoplásicos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Mitocondrias/metabolismo , Línea Celular Tumoral
14.
Cancers (Basel) ; 15(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37174030

RESUMEN

Mitochondria are regulators of key cellular processes, including energy production and redox homeostasis. Mitochondrial dysfunction is associated with various human diseases, including cancer. Importantly, both structural and functional changes can alter mitochondrial function. Morphologic and quantifiable changes in mitochondria can affect their function and contribute to disease. Structural mitochondrial changes include alterations in cristae morphology, mitochondrial DNA integrity and quantity, and dynamics, such as fission and fusion. Functional parameters related to mitochondrial biology include the production of reactive oxygen species, bioenergetic capacity, calcium retention, and membrane potential. Although these parameters can occur independently of one another, changes in mitochondrial structure and function are often interrelated. Thus, evaluating changes in both mitochondrial structure and function is crucial to understanding the molecular events involved in disease onset and progression. This review focuses on the relationship between alterations in mitochondrial structure and function and cancer, with a particular emphasis on gynecologic malignancies. Selecting methods with tractable parameters may be critical to identifying and targeting mitochondria-related therapeutic options. Methods to measure changes in mitochondrial structure and function, with the associated benefits and limitations, are summarized.

15.
Photochem Photobiol ; 96(3): 718-724, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31742696

RESUMEN

Targeted photodynamic therapy (PDT) combined with image-guided surgical resection is a promising strategy for precision cancer treatment. Prostate-specific membrane antigen (PSMA) is an attractive target due to its pronounced overexpression in a variety of tumors, most notably in prostate cancer. Recently, we reported a pyropheophorbide-based PSMA-targeted agent, which exhibited long plasma circulation time and effective tumor accumulation. To further advance PSMA-targeted photodynamic therapy by harvesting tissue-penetrating properties of the NIR light, we developed a bacteriochlorophyll-based PSMA-targeted photosensitizer (BPP), consisting of three building blocks: (1) a PSMA-affinity ligand, (2) a peptide linker to prolong plasma circulation time and (3) a bacteriochlorophyll photosensitizer for NIR fluorescence imaging and photodynamic therapy (Qy absorption maximum at 750 nm). BPP exhibited excellent PSMA-targeting selectivity in both subcutaneous and orthotopic mouse models. The nine D-peptide linker in BPP structure prolonged its plasma circulation time (12.65 h). Favorable pharmacokinetic properties combined with excellent targeting selectivity enabled effective BPP tumor accumulation, which led to effective PDT in a subcutaneous prostate adenocarcinoma mouse model. Overall, bright NIR fluorescence of BPP enables effective image guidance for surgical resection, while the combination of its targeting capabilities and PDT activity allows for potent and precise image-guided photodynamic treatment of PSMA-expressing tumors.


Asunto(s)
Antígenos de Superficie/sangre , Glutamato Carboxipeptidasa II/sangre , Rayos Infrarrojos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Medicina de Precisión , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Antígenos de Superficie/efectos de los fármacos , Glutamato Carboxipeptidasa II/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Desnudos , Microscopía Fluorescente , Fármacos Fotosensibilizantes/farmacocinética
16.
ACS Nano ; 13(4): 4560-4571, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30916932

RESUMEN

Lipoprotein mimetic nanostructures, which consist of an amphiphilic lipid shell, a hydrophobic core, and an apolipoprotein mimetic peptide, serve as a versatile platform for the design of drug delivery vehicles as well as the investigation of supramolecular assemblies. Porphyrin incorporation into biomimetic lipoproteins allows one to take advantage of the inherent multimodal photophysical properties of porphyrins, yielding various fluorescence, photoacoustic, and photodynamic agents. To facilitate their incorporation into a lipoprotein structure, porphyrins have been conjugated through a variety of strategies. However, the effects of the conjugate structure on the associated nanoparticle's phototherapeutic properties warrants further investigation. Herein, we systematically investigated the effects of two widely utilized porphyrin conjugates, oleylamide and lipid, on biophotonic properties of their resultant porphyrin-lipoprotein nanoparticles in vitro and in vivo. Specifically, we demonstrated that incorporation of the porphyrin moiety as an oleylamide conjugate leads to a highly stable J-aggregate with strong photoacoustic contrast, while incorporation as an ampiphilic lipid moiety into the lipid shell yields an effective fluorescent and photodynamic agent. The current study proposes a rational design strategy for next-generation lipoprotein-based phototheranostic agents, for which nanoassembly-driven biophotonic and therapeutic properties can be tailored through the specific selection of porphyrin conjugate structures.

17.
Adv Healthc Mater ; 8(6): e1800857, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30211482

RESUMEN

The discovery and synthesis of multifunctional organic building blocks for nanoparticles have remained challenging. Texaphyrin macrocycles are multifunctional, all-organic compounds that possess versatile metal-chelation capabilities and unique theranostics properties for biomedical applications. Unfortunately, there are significant difficulties associated with the synthesis of texaphyrin-based subunits capable of forming nanoparticles. Herein, the detailed synthesis of a texaphyrin-phospholipid building block is reported via a key 1,2-dinitrophenyl-phospholipid intermediate, along with stable chelation of two clinically relevant metal ions into texaphyrin-lipid without compromising their self-assembly into texaphyrin nanoparticles or nanotexaphyrin. A postinsertion methodology to quantitatively insert a variety of metal-ions into preformed nanotexaphyrins is developed and employed to synthesize a structurally stable, mixed 111 indium-manganese-nanotexaphyrin for dual modal single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). In vivo dual SPECT/MRI imaging of 111 In-Mn-nanotexaphyrins in an orthotopic prostatic PC3 mouse model demonstrates complementary signal enhancement in the tumor with both modalities at 22 h post intravenous administration. This result highlights the utility of hybrid metallo-nanotexaphyrins to achieve sensitive and accurate detection of tumors by accommodating multiple imaging modalities. The power of this mixed and matched metallo-nanotexaphyrin strategy can be unleashed to allow a diverse range of multifunctional biomedical imaging.


Asunto(s)
Metales/química , Nanopartículas/química , Neoplasias/diagnóstico , Porfirinas/química , Animales , Modelos Animales de Enfermedad , Indio/química , Imagen por Resonancia Magnética , Manganeso/química , Ratones , Nanomedicina , Neoplasias/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único
18.
Theranostics ; 9(9): 2727-2738, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31131064

RESUMEN

Objective: To investigate Porphysome fluorescence image-guided resection (PYRO-FGR) for detection of uterine tumour, metastatic lymph nodes and abdominal metastases in a model of endometrial cancer. Methods: White New Zealand rabbits were inoculated with VX2 cells via intra-myometrial injection. At 30 days, Porphysomes were administered intravenously. At 24 h the abdomen was imaged and fluorescent tissue identified (PYRO-FGR). After complete resection of fluorescent tissue, fluorescence-negative lymph nodes and peritoneal biopsies were removed. Histopathology including ultra-staging and analysis by a pathologist was used to detect tumour. Fluorescence signal to background ratio (SBR) was calculated and VX2 (+) tissue compared to VX2 (-) tissue. Biodistribution was calculated and Porphysome accumulation in fluorescent VX2 (+) tissue compared to fluorescent VX2 (-) and non-fluorescent VX2 (-) tissue. Results: Of 17 VX2 models, 10 received 4 mg/kg of Porphysomes and 7 received 1 mg/kg. Seventeen tumours (UT), 81 lymph nodes (LN) and 54 abdominal metastases (AM) were fluorescence-positive and resected. Of these, 17 UT, 60 LN and 45 AM were VX2 (+), while 16 LN and 5 AM were VX2 (-). Nine specimens were excluded from analysis. Thirty-one LN and 53 peritoneal biopsies were fluorescence-negative and resected. Of these, all LN and 51/53 biopsies were VX2 (-) with only 2 false-negative biopsies. Sensitivity and specificity of PYRO-FGR for VX2 (+) tissue was 98.4% / 80.0% overall, 100% / 100% for UT, 100% / 66.0 % for LN and 95.7% / 91.4% for AM. Increased SBR and biodistribution was observed in VX2 (+) tissue vs. VX2 (-) tissue. Conclusions: Porphysomes are a highly sensitive imaging agent for intra-operative detection and resection of uterine tumour, metastatic lymph nodes and abdominal metastases.


Asunto(s)
Neoplasias Abdominales/diagnóstico por imagen , Neoplasias Endometriales/diagnóstico por imagen , Colorantes Fluorescentes/química , Ganglios Linfáticos/diagnóstico por imagen , Imagen Molecular/métodos , Porfirinas/química , Cirugía Asistida por Computador/métodos , Neoplasias Abdominales/secundario , Neoplasias Abdominales/cirugía , Animales , Línea Celular Tumoral , Colesterol/química , Radioisótopos de Cobre , Neoplasias Endometriales/patología , Neoplasias Endometriales/cirugía , Endometrio/diagnóstico por imagen , Endometrio/patología , Endometrio/cirugía , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Inyecciones Intravenosas , Escisión del Ganglio Linfático/instrumentación , Escisión del Ganglio Linfático/métodos , Ganglios Linfáticos/patología , Ganglios Linfáticos/cirugía , Metástasis Linfática/diagnóstico por imagen , Metástasis Linfática/patología , Imagen Molecular/instrumentación , Nanopartículas/administración & dosificación , Nanopartículas/química , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Conejos , Sensibilidad y Especificidad , Coloración y Etiquetado/métodos , Cirugía Asistida por Computador/instrumentación
19.
Nanomedicine (Lond) ; 13(22): 2817-2820, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30421644

RESUMEN

Dr Zheng received his PhD in 1999 from SUNY Buffalo in Medicinal Chemistry. Following 2 years of postdoctoral training in photodynamic therapy at the Roswell Park Cancer Institute, he joined the University of Pennsylvania in 2001 as an Assistant Professor of Radiology, where he established the molecular imaging chemistry program and introduced photodynamic molecular beacons and lipoprotein-like nanoparticles. Since moving to Canada in 2006, his research has been focused on developing clinically translatable technology platforms to combat cancer. His lab discovered porphysome nanotechnology that opened a new frontier in cancer imaging and therapy (Nature Materials 2011), which was named one of the 'top 10 cancer breakthroughs of 2011' by the Canadian Cancer Society. Dr Zheng is an Associate Editor for Bioconjugate Chemistry and a Fellow of the American Institute for Medical and Biological Engineering.


Asunto(s)
Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Sistemas de Liberación de Medicamentos/métodos , Humanos , Lipoproteínas/química , Imagen Molecular/métodos , Nanomedicina/métodos , Nanopartículas/química , Fotoquimioterapia/métodos
20.
Biomaterials ; 156: 217-237, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29207323

RESUMEN

Despite rapid advancements in the field of nanotechnology, there is mounting frustration in the scientific community regarding the translational impact of nanomedicine. Modest therapeutic performance of FDA-approved nanomedicines combined with multiple disappointing clinical trials (such as phase III HEAT trial) have raised questions about the future of nanomedicine. Encouraging breakthroughs, however, have been made in the last few years towards the development of new classes of nanoparticles that can respond to tumor microenvironmental conditions and successfully deliver therapeutic agents to cancer cells. Concurrently, a great deal of effort has also been devoted to alter various parameters of tumor pathophysiology to pre-treat tumors before nanoparticles are administered. Such 'priming' treatments improve access of the systemically administered agents to the tumor and promote drug penetration into the deeper layers of tumor tissue. This review will highlight recent advances in cancer nanomedicine exploiting both nanoparticle design and tumor microenvironment modification; and provide a critical perspective on the future development of nanomedicine delivery in oncology.


Asunto(s)
Nanomedicina , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Microambiente Tumoral , Animales , Sistemas de Liberación de Medicamentos , Matriz Extracelular/metabolismo , Humanos , Neoplasias/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA