Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Pest Manag Sci ; 79(12): 4819-4827, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37498675

RESUMEN

BACKGROUND: A landscape-scale probability-based sampling of Iowa soybean [Glycine max (L.) Merr.] fields was conducted in 2013 and 2019; Amaranthus tuberculatus [Moq.] J.D. Sauer seed was collected from 97 random geospatial selected fields. The objectives were to evaluate the prevalence and distribution of herbicide-resistant A. tuberculatus (waterhemp) in soybean fields and evaluate temporal changes over 6 years. Amaranthus tuberculatus seedlings were evaluated for resistance to imazethapyr, atrazine, glyphosate, lactofen and mesotrione at 1× and 4× label rates. RESULTS: Resistance to imazethapyr, glyphosate, lactofen and mesotrione at the 1× rate increased significantly from 2013 to 2019 and was found in 99%, 97%, 16% and 15% of Iowa A. tuberculatus populations in 2019, respectively. Resistance to atrazine at the 4× rate increased over time; atrazine resistance was found in 68% of populations in 2019. Three-way multiple herbicide-resistant A. tuberculatus was the most frequent and increased significantly to 4× rates from 16% in 2013 to 43% of populations in 2019. All A. tuberculatus populations resistant to HPPD-inhibitor herbicides also were resistant to atrazine. CONCLUSION: To the best of our knowledge, this is the first probability-based study that presented evolution of A. tuberculatus herbicide resistance over time. The results demonstrated that imazethapyr, atrazine and glyphosate resistance in Iowa A. tuberculatus populations was frequent whereas resistance to lactofen and mesotrione was less frequent. Most Iowa A. tuberculatus populations evolved resistance to multiple sites of action over time. The results of our study are widely applicable given the similarities in weed management practices throughout the Midwest United States. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Amaranthus , Atrazina , Herbicidas , Resistencia a los Herbicidas , Herbicidas/farmacología , Iowa , Glycine max
2.
Pest Manag Sci ; 76(6): 2030-2039, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31930763

RESUMEN

BACKGROUND: It has been frequently argued that growers have less incentive to manage the evolution and spread of herbicide-resistant weeds on leased than on owned land. This is because resistance management provides long-term rather than short-term benefits that operators may be less assured of capturing on land they do not own. Yet, empirical evidence supporting this argument has been lacking. RESULTS: This study reports on results from a large-scale national survey of weed management and other crop production practices on US agricultural fields. Up to 11 weed management practices were compared across owner-operated versus renter-operated fields. Analysis of survey data from corn and soybean fields did not support the hypothesis that adoption of resistance management practices is lower on rented acres. In most instances, there were no statistically significant differences in herbicide use or weed management practices on rented versus owned land. This was true at both national and regional levels of analysis. Where there were significant differences, practices associated with greater herbicide resistance management were, as often as not, more prevalent on rented than owned land. CONCLUSIONS: A useful area of future research would be to test for land tenure differences in resistance management using multivariate analysis to control for confounding effects. Unobserved farmer or land characteristics may be confounding results and masking land tenure effects. Results here, however, suggest that these other effects are dominating any obvious disincentive effects of land leasing on resistance management. Of greater concern, the adoption of key resistance management practices was low on both owned and rented land. © 2020 Society of Chemical Industry.


Asunto(s)
Glycine max , Zea mays , Productos Agrícolas , Agricultores , Granjas , Herbicidas , Humanos , Malezas , Control de Malezas
3.
Pest Manag Sci ; 73(1): 22-34, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27598030

RESUMEN

Resistance has evolved to single transgenic traits engineered into crops for arthropod and herbicide resistances, and can be expected to evolve to the more recently introduced pathogen resistances. Combining transgenes against the same target pest is being promoted as the solution to the problem. This solution will work if used pre-emptively, but where resistance has evolved to one member of a stack, resistance should easily evolve for the second gene in most cases. We propose and elaborate criteria that could be used to evaluate the value of stacked traits for pest resistance management. Stacked partners must: target the same pest species; be in a tandem construct to preclude segregation; be synchronously expressed in the same tissues; have similar tissue persistence; target pest species that are still susceptible to at least two stacked partners. Additionally, transgene products must not be degraded in the same manner, and there should be a lack of cross-resistance to stacked transgenes or to their products. With stacked herbicide resistance transgenes, both herbicides must be used and have the same persistence. If these criteria are followed, and integrated with other pest management practices, resistance may be considerably delayed. © 2016 Society of Chemical Industry.


Asunto(s)
Resistencia a los Insecticidas/genética , Control Biológico de Vectores/métodos , Plantas Modificadas Genéticamente , Animales , Productos Agrícolas/genética , Evolución Molecular , Factores de Tiempo , Transgenes
4.
Pest Manag Sci ; 73(2): 462-474, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27174645

RESUMEN

BACKGROUND: Simulation models are useful tools for predicting and comparing the risk of herbicide resistance in weed populations under different management strategies. Most existing models assume a monogenic mechanism governing herbicide resistance evolution. However, growing evidence suggests that herbicide resistance is often inherited in a polygenic or quantitative fashion. Therefore, we constructed a generalised modelling framework to simulate the evolution of quantitative herbicide resistance in summer annual weeds. RESULTS: Real-field management parameters based on Amaranthus tuberculatus (Moq.) Sauer (syn. rudis) control with glyphosate and mesotrione in Midwestern US maize-soybean agroecosystems demonstrated that the model can represent evolved herbicide resistance in realistic timescales. Sensitivity analyses showed that genetic and management parameters were impactful on the rate of quantitative herbicide resistance evolution, whilst biological parameters such as emergence and seed bank mortality were less important. CONCLUSION: The simulation model provides a robust and widely applicable framework for predicting the evolution of quantitative herbicide resistance in summer annual weed populations. The sensitivity analyses identified weed characteristics that would favour herbicide resistance evolution, including high annual fecundity, large resistance phenotypic variance and pre-existing herbicide resistance. Implications for herbicide resistance management and potential use of the model are discussed. © 2016 Society of Chemical Industry.


Asunto(s)
Algoritmos , Amaranthus , Ciclohexanonas , Glicina/análogos & derivados , Resistencia a los Herbicidas , Amaranthus/genética , Evolución Biológica , Herbicidas/farmacología , Malezas/genética , Glycine max , Zea mays , Glifosato
5.
Pest Manag Sci ; 73(9): 1953-1961, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28266154

RESUMEN

BACKGROUND: Atrazine (ATZ) has been a key herbicide for annual weed control in corn, with both a soil and post-emergence vegetation application period. Although enhanced ATZ degradation in soil with a history of ATZ use has been reported, the extent and rate of degradation in the US Corn Belt is uncertain. We show that enhanced ATZ degradation exists across much of the country. RESULTS: Soils from 15 of 16 surveyed states had enhanced ATZ degradation. The average ATZ half-life was only 2.3 days in ATZ history soils, compared with an average 14.5 days in soils with no previous ATZ use, meaning that ATZ degrades an average 6 times faster in soils with previous ATZ use. CONCLUSION: When ATZ is used for several years, enhanced degradation will undoubtedly change the way ATZ is used in agronomic crops and also its ultimate environmental fate. © 2017 Society of Chemical Industry.


Asunto(s)
Atrazina/metabolismo , Atrazina/química , Suelo/química , Microbiología del Suelo , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA