Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 166(5): 1147-1162.e15, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27565344

RESUMEN

Alternative splicing is prevalent in the mammalian brain. To interrogate the functional role of alternative splicing in neural development, we analyzed purified neural progenitor cells (NPCs) and neurons from developing cerebral cortices, revealing hundreds of differentially spliced exons that preferentially alter key protein domains-especially in cytoskeletal proteins-and can harbor disease-causing mutations. We show that Ptbp1 and Rbfox proteins antagonistically govern the NPC-to-neuron transition by regulating neuron-specific exons. Whereas Ptbp1 maintains apical progenitors partly through suppressing a poison exon of Flna in NPCs, Rbfox proteins promote neuronal differentiation by switching Ninein from a centrosomal splice form in NPCs to a non-centrosomal isoform in neurons. We further uncover an intronic human mutation within a PTBP1-binding site that disrupts normal skipping of the FLNA poison exon in NPCs and causes a brain-specific malformation. Our study indicates that dynamic control of alternative splicing governs cell fate in cerebral cortical development.


Asunto(s)
Empalme Alternativo , Corteza Cerebral/embriología , Células-Madre Neurales/citología , Neurogénesis/genética , Neuronas/citología , Animales , Centrosoma/metabolismo , Corteza Cerebral/anomalías , Corteza Cerebral/citología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Exones , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Ratones , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Dominios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Empalme de ARN
2.
Proc Natl Acad Sci U S A ; 119(30): e2122227119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858420

RESUMEN

NF-κB-mediated endothelial activation drives leukocyte recruitment and atherosclerosis, in part through adhesion molecules Icam1 and Vcam1. The endothelium is primed for cytokine activation of NF-κB by exposure to low and disturbed blood flow (LDF)but the molecular underpinnings are not fully understood. In an experimental in vivo model of LDF, platelets were required for the increased expression of several RNA-binding splice factors, including polypyrimidine tract binding protein (Ptbp1). This was coordinated with changes in RNA splicing in the NF-κB pathway in primed cells, leading us to examine splice factors as mediators of priming. Using Icam1 and Vcam1 induction by tumor necrosis factor (TNF)-α stimulation as a readout, we performed a CRISPR Cas9 knockout screen and identified a requirement for Ptbp1 in priming. Deletion of Ptbp1 had no effect on cell growth or response to apoptotic stimuli, but reversed LDF splicing patterns and inhibited NF-κB nuclear translocation and transcriptional activation of downstream targets, including Icam1 and Vcam1. In human coronary arteries, elevated PTBP1 correlates with expression of TNF pathway genes and plaque. In vivo, endothelial-specific deletion of Ptbp1 reduced Icam1 expression and myeloid cell infiltration at regions of LDF in atherosclerotic mice, limiting atherosclerosis. This may be mediated, in part, by allowing inclusion of a conserved alternative exon in Ripk1 leading to a reduction in Ripk1 protein. Our data show that Ptbp1, which is induced in a subset of the endothelium by platelet recruitment at regions of LDF, is required for priming of the endothelium for subsequent NF-κB activation, myeloid cell recruitment and atherosclerosis.


Asunto(s)
Aterosclerosis , Proteína de Unión al Tracto de Polipirimidina , Empalme Alternativo , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Endotelio/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Inflamación/genética , Inflamación/metabolismo , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo
3.
Genes Cells ; 28(7): 482-495, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37073980

RESUMEN

Histone methylation plays a vital role in retinal development. However, the role of histone H3K36 methylation in retinal development is not clear. We examined the role of H3K36 methylation by loss-of-function analysis of H3K36me1/2 demethylases, Fbxl10, and Fbxl11. We analyzed the effect of knockout of these genes in the developing and mature retina on retinal development. Knockout of Fbxl10 specifically in the developing retina did not result in gross developmental abnormalities. Although adult rod photoreceptor-specific knockout of Fbxl11 in mature retinas did not result in morphological abnormalities, Fbxl11 knockout in developing retinas increased apoptosis, suppressed the proliferation of retinal progenitor cells, and resulted in microphthalmia. Morphological analysis revealed perturbed differentiation of rod photoreceptor and bipolar cells. RNA-seq of retinas at P7 showed markedly decreased expression of genes characterizing rod photoreceptor and bipolar cells in Fbxl11-knockout retinas. In addition, perturbation of alternative splicing increased intron retention in Fbxl11-knockout retinas. Genome-wide evaluation of the H3K36 methylation status revealed that Fbxl11 knockout altered the distribution of H3K36me2/3 in genes important for rod photoreceptor development. Taken together, we show that Fbxl11 plays pivotal roles in the development of retinal late-born cell types and may contribute to tight control of H3K36 methylation during retinal development.


Asunto(s)
Histona Demetilasas , Histonas , Diferenciación Celular/genética , Histona Demetilasas/genética , Histonas/genética , Histonas/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones , Animales , Ratones
5.
PLoS Genet ; 17(8): e1009688, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34351902

RESUMEN

Autophagy degrades unnecessary proteins or damaged organelles to maintain cellular function. Therefore, autophagy has a preventive role against various diseases including hepatic disorders, neurodegenerative diseases, and cancer. Although autophagy in germ cells or Sertoli cells is known to be required for spermatogenesis and male fertility, it remains poorly understood how autophagy participates in spermatogenesis. We found that systemic knockout mice of Rubicon, a negative regulator of autophagy, exhibited a substantial reduction in testicular weight, spermatogenesis, and male fertility, associated with upregulation of autophagy. Rubicon-null mice also had lower levels of mRNAs of Sertoli cell-related genes in testis. Importantly, Rubicon knockout in Sertoli cells, but not in germ cells, caused a defect in spermatogenesis and germline stem cell maintenance in mice, indicating a critical role of Rubicon in Sertoli cells. In mechanistic terms, genetic loss of Rubicon promoted autophagic degradation of GATA4, a transcription factor that is essential for Sertoli cell function. Furthermore, androgen antagonists caused a significant decrease in the levels of Rubicon and GATA4 in testis, accompanied by elevated autophagy. Collectively, we propose that Rubicon promotes Sertoli cell function by preventing autophagic degradation of GATA4, and that this mechanism could be regulated by androgens.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Técnicas de Inactivación de Genes/métodos , Péptidos y Proteínas de Señalización Intracelular/genética , Células de Sertoli/fisiología , Animales , Autofagia , Línea Celular , Fertilidad , Humanos , Masculino , Ratones , Proteolisis , Células de Sertoli/citología , Análisis de la Célula Individual , Espermatogénesis , Testículo/crecimiento & desarrollo , Testículo/metabolismo
6.
Biochem Biophys Res Commun ; 599: 43-50, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35168063

RESUMEN

The cyclin-dependent kinase inhibitor p16Ink4a plays a central role in cellular senescence in vitro. Although previous studies suggested cellular senescence is integrated in the systemic mechanisms of organismal aging, the localization and the dynamics of p16Ink4a in tissues remain poorly understood, which hinders uncovering the role of p16Ink4a under the in vivo context. One of the reasons is due to the lack of reliable reagents; as we also demonstrate here that commonly used antibodies raised against human p16INK4A barely recognize its murine ortholog. Here we generated a mouse model, in which the endogenous p16Ink4a is HA-tagged at its N-terminus, to explore the protein expression of p16Ink4a at the organismal level. p16Ink4a was induced at the protein level along the course of senescence in primary embryonic fibroblasts derived from the mice, consistently to its transcriptional level. Remarkably, however, p16Ink4a was not detected in the tissues of the mice exposed to pro-senescence conditions including genotoxic stress and activation of oncogenic signaling pathways, indicating that there is only subtle p16Ink4a proteins induced. These results in our mouse model highlight the need for caution in evaluating p16Ink4a protein expression in vivo.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Animales , Reacciones Cruzadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/inmunología , Daño del ADN , Exones , Hígado/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Células 3T3 NIH
7.
Int Immunol ; 33(9): 479-490, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34161582

RESUMEN

RNase T2, a ubiquitously expressed RNase, degrades RNAs in the endosomal compartments. RNA sensors, double-stranded RNA (dsRNA)-sensing Toll-like receptor 3 (TLR3) and single-stranded RNA (ssRNA)-sensing TLR7, are localized in the endosomal compartment in mouse macrophages. We here studied the role of RNase T2 in TLR3 and TLR7 responses in macrophages. Macrophages expressed RNase T2 and a member of the RNase A family RNase 4. RNase T2 was also expressed in plasmacytoid and conventional dendritic cells. Treatment with dsRNAs or type I interferon (IFN) up-regulated expression of RNase T2 but not RNase 4. RNase T2-deficiency in macrophages up-regulated TLR3 responses but impaired TLR7 responses. Mechanistically, RNase T2 degraded both dsRNAs and ssRNAs in vitro, and its mutants showed a positive correlation between RNA degradation and the rescue of altered TLR3 and TLR7 responses. H122A and C188R RNase T2 mutations, not H69A and E118V mutations, impaired both RNA degradation and the rescue of altered TLR3 and TLR7 responses. RNase T2 in bone marrow-derived macrophages was broadly distributed from early endosomes to lysosomes, and colocalized with the internalized TLR3 ligand poly(I:C). These results suggest that RNase T2-dependent RNA degradation in endosomes/lysosomes negatively and positively regulates TLR3 and TLR7 responses, respectively, in macrophages.


Asunto(s)
Endorribonucleasas/metabolismo , Endosomas/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , ARN Bicatenario/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 7/metabolismo , Animales , Línea Celular , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células HEK293 , Humanos , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL
8.
Int Immunol ; 31(3): 157-166, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30476084

RESUMEN

The RNA-binding protein polypyrimidine tract-binding protein-1 (Ptbp1) binds to the pyrimidine-rich sequence of target RNA and controls gene expression via post-transcriptional regulation such as alternative splicing. Although Ptbp1 is highly expressed in B lymphocytes, its role to date is largely unknown. To clarify the role of Ptbp1 in B-cell development and function, we generated B-cell-specific Ptbp1-deficient (P1BKO) mice. B-cell development in the bone marrow, spleen and peritoneal cavity of the P1BKO mice was nearly normal. However, the P1BKO mice had significantly lower levels of natural antibodies in serum compared with those of the control mice. To investigate the effect of Ptbp1 deficiency on the immune response in vivo, we immunized the P1BKO mice with T-cell-independent type-2 (TI-2) antigen NP-Ficoll and T-cell-dependent (TD) antigen NP-CGG. We found that B-cell-specific Ptbp1 deficiency causes an immunodeficiency phenotype due to defective production of antibody against both TI-2 and TD antigen. This immunodeficiency was accompanied by impaired B-cell receptor (BCR)-mediated B-cell activation and plasmablast generation. These findings demonstrate that Ptbp1 is essential for the humoral immune response.


Asunto(s)
Formación de Anticuerpos/inmunología , Ribonucleoproteínas Nucleares Heterogéneas/inmunología , Proteína de Unión al Tracto de Polipirimidina/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Animales , Reacciones Antígeno-Anticuerpo , Antígenos T-Independientes/inmunología , Linfocitos B/inmunología , Ribonucleoproteínas Nucleares Heterogéneas/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína de Unión al Tracto de Polipirimidina/deficiencia , Linfocitos T/inmunología
9.
J Reprod Dev ; 66(5): 459-467, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-32624547

RESUMEN

PTBP1, a well-conserved RNA-binding protein, regulates cellular development by tuning posttranscriptional mRNA modification such as alternative splicing (AS) or mRNA stabilization. We previously revealed that the loss of Ptbp1 in spermatogonia causes the dysregulation of spermatogenesis, but the molecular mechanisms by which PTBP1 regulates spermatogonium homeostasis are unclear. In this study, changes of AS or transcriptome in Ptbp1-knockout (KO) germline stem cells (GSC), an in vitro model of proliferating spermatogonia, was determined by next generation sequencing. We identified more than 200 differentially expressed genes, as well as 85 genes with altered AS due to the loss of PTBP1. Surprisingly, no differentially expressed genes overlapped with different AS genes in Ptbp1-KO GSC. In addition, we observed that the mRNA expression of Nanos3, an essential gene for normal spermatogenesis, was significantly decreased in Ptbp1-KO spermatogonia. We also revealed that PTBP1 protein binds to Nanos3 mRNA in spermatogonia. Furthermore, Nanos3+/-;Ptbp1+/- mice exhibited abnormal spermatogenesis, which resembled the effects of germ cell-specific Ptbp1 KO, whereas no significant abnormality was observed in mice heterozygous for either gene alone. These data implied that PTBP1 regulates alternative splicing and transcriptome in spermatogonia under different molecular pathways, and contributes spermatogenesis, at least in part, in concert with NANOS3.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas de Unión al ARN/metabolismo , Espermatogénesis/fisiología , Espermatogonias/metabolismo , Animales , Eliminación de Gen , Genes Reguladores , Células Germinativas/citología , Heterocigoto , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión al ARN/genética , RNA-Seq , Testículo/metabolismo , Transcriptoma
10.
J Reprod Dev ; 65(1): 37-46, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30416150

RESUMEN

Polypyrimidine tract-binding protein 1 (PTBP1) is a highly conserved RNA-binding protein that is a well-known regulator of alternative splicing. Testicular tissue is one of the richest tissues with respect to the number of alternative splicing mRNA isoforms, but the molecular role(s) of PTBP1 in the regulation of these isoforms during spermatogenesis is still unclear. Here, we developed a germ cell-specific Ptbp1 conditional knockout (cKO) mouse model by using the Cre-loxP system to investigate the role of PTBP1 in spermatogenesis. Testis weight in Ptbp1 cKO mice was comparable to that in age-matched controls until 3 weeks of age; at ≥ 2 months old, testis weight was significantly lighter in cKO mice than in age-matched controls. Sperm count in Ptbp1 cKO mice at 2 months old was comparable to that in controls, whereas sperm count significantly decreased at 6 months old. Seminiferous tubules that exhibited degeneration in spermatogenic function were more evident in the 2-month-old Ptbp1 cKO mice than in controls. In addition, the early neonatal proliferation of spermatogonia, during postnatal days 1-5, was significantly retarded in Ptbp1 cKO mice compared with that in controls. An in vitro spermatogonia culture model (germline stem cells) revealed that hydroxytamoxifen-induced deletion of PTBP1 from germline stem cells caused severe proliferation arrest accompanied by an increase of apoptotic cell death. These data suggest that PTBP1 contributes to spermatogenesis through regulation of spermatogonia proliferation.


Asunto(s)
Proliferación Celular/fisiología , Ribonucleoproteínas Nucleares Heterogéneas/fisiología , Proteína de Unión al Tracto de Polipirimidina/fisiología , Espermatogénesis/fisiología , Espermatogonias/citología , Empalme Alternativo/fisiología , Animales , Apoptosis , Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas/deficiencia , Ribonucleoproteínas Nucleares Heterogéneas/genética , Masculino , Ratones Noqueados , Tamaño de los Órganos , Proteína de Unión al Tracto de Polipirimidina/deficiencia , Proteína de Unión al Tracto de Polipirimidina/genética , Túbulos Seminíferos/fisiología , Recuento de Espermatozoides , Espermatocitos/metabolismo , Espermatogonias/metabolismo , Testículo/citología , Testículo/crecimiento & desarrollo
11.
Reproduction ; 153(4): 405-419, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28069902

RESUMEN

The bovine was used to examine the potential for WNT signaling to affect the preimplantation embryo. Expression of seven key genes involved in canonical WNT signaling declined to a nadir at the morula or blastocyst stage. Expression of 80 genes associated with WNT signaling in the morula and inner cell mass (ICM) and trophectoderm (TE) of the blastocyst was also evaluated. Many genes associated with WNT signaling were characterized by low transcript abundance. Seven genes were different between ICM and TE, and all of them were overexpressed in TE as compared to ICM, including WNT6, FZD1, FZD7, LRP6, PORCN, APC and SFRP1 Immunoreactive CTNNB1 was localized primarily to the plasma membrane at all stages examined from the 2-cell to blastocyst stages of development. Strikingly, neither CTNNB1 nor non-phospho (i.e., active) CTNNB1 was observed in the nucleus of blastomeres at any stage of development even after the addition of WNT activators to culture. In contrast, CTNNB1 associated with the plasma membrane was increased by activators of WNT signaling. The planar cell polarity pathway (PCP) could be activated in the embryo as indicated by an experiment demonstrating an increase in phospho-JNK in the nucleus of blastocysts treated with the non-canonical WNT11. Furthermore, WNT11 improved development to the blastocyst stage. In conclusion, canonical WNT signaling is attenuated in the preimplantation bovine embryo but WNT can activate the PCP component JNK. Thus, regulation of embryonic development by WNT is likely to involve activation of pathways independent of nuclear actions of CTNNB1.


Asunto(s)
Masa Celular Interna del Blastocisto/metabolismo , Núcleo Celular/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Mórula/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , Animales , Masa Celular Interna del Blastocisto/citología , Bovinos , Núcleo Celular/genética , Técnicas de Cultivo de Embriones/veterinaria , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ratones , Mórula/citología , Embarazo , Transducción de Señal
12.
Biol Reprod ; 94(4): 92, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26984996

RESUMEN

The F-box and leucine-rich repeat protein 10 (Fbxl10) gene encodes a protein that catalyzes demethylation of H3K4 and H3K36. In this study, we show the important roles of FBXL10 as a histone demethylase in sustainable sperm production using mice in which the JmjC domain of Fbxl10 was deleted (Fbxl10(DeltaJ/DeltaJ)). In histological analysis, testis sections from 10-wk-old Fbxl10(DeltaJ/DeltaJ) mice appeared normal. On the other hand, testes from 7-mo-old Fbxl10(DeltaJ/DeltaJ) mice contained a greater ratio of seminiferous tubules exhibiting degeneration of spermatogenesis. Further analysis using an in vitro spermatogonia culture system, that is, germline stem cells (GSCs), revealed that Fbxl10(DeltaJ/DeltaJ) GSCs expressed a significantly higher level of P21 and P19 mRNA, cyclin-dependent kinase inhibitors and also known as cellular senescence markers, than wild-type (WT) GSCs. Furthermore, the ratio of Fbxl10(DeltaJ/DeltaJ) GSCs in G0/G1 phase was higher and the ratios in S and G2/M phases were lower than the corresponding ratios of WT GSCs, and the doubling speed of Fbxl10(DeltaJ/DeltaJ) GSCs was significantly slower than that of WT GSCs. In addition to these in vitro results, an in vivo study indicated that recovery of spermatogenesis after a transient reduction in the number of testicular germ cells by busulfan treatment was significantly slower in Fbxl10(DeltaJ/DeltaJ) mice than in WT mice. These data suggest that Fbxl10 plays important roles in long-term sustainable spermatogenesis via regulating cell cycle.


Asunto(s)
Células Madre Germinales Adultas/metabolismo , Proteínas F-Box/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Espermatogénesis , Espermatogonias/fisiología , Animales , Busulfano , Ciclo Celular , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Masculino , Ratones Endogámicos C57BL , Testículo/metabolismo
13.
Reprod Fertil Dev ; 28(4): 482-90, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25116760

RESUMEN

Protein kinase C (PKC) delta (PRKCD) is a member of the novel PKC subfamily that regulates gene expression in bovine trophoblast cells. Additional functions for PRKCD in early embryonic development in cattle have not been fully explored. The objectives of this study were to describe the expression profile of PRKCD mRNA in bovine embryos and to examine its biological roles during bovine embryo development. Both PRKCD mRNA and protein are present throughout early embryo development and increases in mRNA abundance are evident at morula and blastocyst stages. Phosphorylation patterns are consistent with detection of enzymatically active PRKCD in bovine embryos. Exposure to a pharmacological inhibitor (rottlerin) during early embryonic development prevented development beyond the eight- to 16-cell stage. Treatment at or after the 16-cell stage reduced blastocyst development rates, total blastomere numbers and inner cell mass-to-trophoblast cell ratio. Exposure to the inhibitor also decreased basal interferon tau (IFNT) transcript abundance and abolished fibroblast growth factor-2 induction of IFNT expression. Furthermore, trophoblast adhesion and proliferation was compromised in hatched blastocysts. These observations provide novel insights into PRKCD mRNA expression profiles in bovine embryos and provide evidence for PRKCD-dependent regulation of embryonic development, gene expression and post-hatching events.


Asunto(s)
Blastocisto/enzimología , Proteína Quinasa C-delta/metabolismo , Acetofenonas/farmacología , Animales , Benzopiranos/farmacología , Blastocisto/efectos de los fármacos , Bovinos , Adhesión Celular , Proliferación Celular , Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Femenino , Fertilización In Vitro , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Fosforilación , Embarazo , Proteínas Gestacionales/genética , Proteínas Gestacionales/metabolismo , Proteína Quinasa C-delta/antagonistas & inhibidores , Proteína Quinasa C-delta/genética , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Trofoblastos/enzimología
14.
J Reprod Dev ; 60(3): 256-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24694523

RESUMEN

In pigs, the embryonic developmental ability after intracytoplasmic sperm injection (ICSI) is inferior to that resulting from in vitro fertilization (IVF). We evaluated the timing of cell division up to blastocyst formation on embryonic development after ICSI using either whole sperm (w-ICSI) or the sperm head alone (h-ICSI) and IVF as a control. At 10 h after ICSI or IVF, we selected only zygotes, and each of the zygotes/embryos was evaluated for cleavage every 24 h until 168 h. We then observed a delay in the 1st and 2nd cleavages of h-ICSI embryos and also in blastocoele formation by w-ICSI embryos in comparison with IVF embryos. The rate of blastocyst formation and the quality of blastocysts in both ICSI groups were inferior to those in the IVF group. In conclusion, the delay in cleavage of porcine ICSI embryos shows poorer embryonic development.


Asunto(s)
Fase de Segmentación del Huevo/fisiología , Embrión de Mamíferos/citología , Desarrollo Embrionario , Inyecciones de Esperma Intracitoplasmáticas , Porcinos/embriología , Animales , Células Cultivadas , Técnicas de Cultivo de Embriones , Femenino , Fertilización In Vitro/veterinaria , Masculino , Inyecciones de Esperma Intracitoplasmáticas/efectos adversos , Inyecciones de Esperma Intracitoplasmáticas/veterinaria , Factores de Tiempo
15.
iScience ; 27(2): 108997, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38327785

RESUMEN

The neuromuscular junction (NMJ) forms centrally in myotubes and, as the only synapse between motor neuron and myotube, are indispensable for motor activity. The midmuscle formation of NMJs, including midmuscle-restricted expression of NMJ-related genes, is governed by the muscle-specific kinase (MuSK). However, mechanisms underlying MuSK-mediated signaling are unclear. Here, we find that the Calcium-binding protein 7 (Cabp7) gene shows midmuscle-restricted expression, and muscle-specific depletion of Cabp7 in mice accelerated age-related NMJ degeneration, muscle weakness/atrophy, and motor dysfunction. Surprisingly, forced expression in muscle of CIP, an inhibitory peptide of the negative regulator of NMJ formation cyclin-dependent kinase 5 (Cdk5), restored NMJ integrity and muscle strength, and healed muscle atrophy in muscle-specific Cabp7-deficient mice, which showed increased muscle expression of the Cdk5 activator p25. These findings together demonstrate that MuSK-mediated signaling induces muscle expression of Cabp7, which suppresses age-related NMJ degeneration likely by attenuating p25 expression, providing insights into prophylactic/therapeutic intervention against age-related motor dysfunction.

16.
Commun Biol ; 7(1): 16, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177279

RESUMEN

In mammals, females undergo reproductive cessation with age, whereas male fertility gradually declines but persists almost throughout life. However, the detailed effects of ageing on germ cells during and after spermatogenesis, in the testis and epididymis, respectively, remain unclear. Here we comprehensively examined the in vivo male fertility and the overall organization of the testis and epididymis with age, focusing on spermatogenesis, and sperm function and fertility, in mice. We first found that in vivo male fertility decreased with age, which is independent of mating behaviors and testosterone levels. Second, overall sperm production in aged testes was decreased; about 20% of seminiferous tubules showed abnormalities such as germ cell depletion, sperm release failure, and perturbed germ cell associations, and the remaining 80% of tubules contained lower number of germ cells because of decreased proliferation of spermatogonia. Further, the spermatozoa in aged epididymides exhibited decreased total cell numbers, abnormal morphology/structure, decreased motility, and DNA damage, resulting in low fertilizing and developmental rates. We conclude that these multiple ageing effects on germ cells lead to decreased in vivo male fertility. Our present findings are useful to better understand the basic mechanism behind the ageing effect on male fertility in mammals including humans.


Asunto(s)
Epidídimo , Testículo , Animales , Masculino , Ratones , Envejecimiento , Fertilidad , Mamíferos , Semen , Espermatogonias
17.
Biol Reprod ; 89(6): 141, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24198123

RESUMEN

Colony-stimulating factor 2 (CSF2) enhances competence of the bovine embryo to establish and maintain pregnancy after the embryo is transferred into a recipient. Mechanisms involved could include regulation of lineage commitment, growth, or differentiation of the inner cell mass (ICM) and trophectoderm (TE). Experiments were conducted to evaluate regulation by CSF2 of pluripotency of the ICM and differentiation and growth of the TE. Embryos were cultured with 10 ng/ml recombinant bovine CSF2 or a vehicle control from Days 5 to 7 or 6 to 8 postinsemination. CSF2 increased the number of putative zygotes that developed to blastocysts when the percent of embryos becoming blastocysts in the control group was low but decreased blastocyst yield when blastocyst development in controls was high. ICM isolated from blastocysts by lysing the trophectoderm using antibody and complement via immunosurgery were more likely to survive passage when cultured on mitomycin C-treated fetal fibroblasts if derived from blastocysts treated with CSF2 than if from control blastocysts. There was little effect of CSF2 on characteristics of TE outgrowths from blastocysts. The exception was a decrease in outgrowth size for embryos treated with CSF2 from Days 5 to 7 and an increase in expression of CDX2 when treatment was from Days 6 to 8. Expression of the receptor subunit gene CSF2RA increased from the zygote stage to the 9-16 cell stage before decreasing to the blastocyst stage. In contrast, CSF2RB was undetectable at all stages. In conclusion, CSF2 improves competence of the ICM to survive in a pluripotent state and alters TE outgrowths. Actions of CSF2 occur through a signaling pathway that is likely to be independent of CSF2RB.


Asunto(s)
Masa Celular Interna del Blastocisto/fisiología , Bovinos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Células Madre Pluripotentes/fisiología , Animales , Masa Celular Interna del Blastocisto/efectos de los fármacos , Bovinos/embriología , Diferenciación Celular/genética , Células Cultivadas , Técnicas de Cultivo de Embriones , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/fisiología , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes/efectos de los fármacos , Trofoblastos/efectos de los fármacos , Trofoblastos/fisiología
18.
Reproduction ; 145(2): 191-201, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23241344

RESUMEN

The overall aim of this work was to examine the expression profiles for fibroblast growth factor receptors (FGFRs) and describe their biological importance during bovine pre- and peri-implantation conceptus development. FGFR1 and FGFR2 mRNAs were detected at 1-, 2-, 8-cell, morula and blastocyst stages whereas FGFR3 and FGFR4 mRNAs were detected after the 8-cell stage but not earlier. The abundance of FGFR1, FGFR3, and FGFR4 mRNAs increased at the morula and blastocyst stages. Immunofluorescence microscopy detected FGFR2 and FGFR4 exclusively in trophoblast cells whereas FGFR1 and FGFR3 were detected in both trophoblast cells and inner cell mass in blastocysts. Neither transcripts for FGF10 nor its receptor (FGFR2b) were temporally related to interferon τ (IFNT) transcript profile during peri- and postimplantation bovine conceptus development. A series of studies used a chemical inhibitor of FGFR kinase function (PD173074) to examine FGFR activation requirements during bovine embryo development. Exposing embryos to the inhibitor (1 µM) beginning on day 5 post-fertilization did not alter the percentage of embryos that developed into blastocysts or blastocyst cell numbers. The inhibitor did not alter the abundance of CDX2 mRNA but decreased (P<0.05) the relative abundance of IFNT mRNA in blastocysts. Exposing blastocysts to the inhibitor from days 8 to 11 post-fertilization reduced (P<0.05) the percentage of blastocysts that formed outgrowths after transfer to Matrigel-coated plates. In conclusion, each FGFR was detected in bovine embryos, and FGFR activation is needed to maximize IFNT expression and permit outgrowth formation.


Asunto(s)
Desarrollo Embrionario/genética , Factores de Crecimiento de Fibroblastos/farmacología , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/fisiología , Trofoblastos/efectos de los fármacos , Animales , Blastocisto/metabolismo , Blastocisto/fisiología , Bovinos/embriología , Bovinos/genética , Bovinos/metabolismo , Células Cultivadas , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Embarazo , Receptores de Factores de Crecimiento de Fibroblastos/agonistas , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transcriptoma , Trofoblastos/fisiología
19.
Reprod Biol Endocrinol ; 11: 3, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23320502

RESUMEN

BACKGROUND: While initially sensitive to heat shock, the bovine embryo gains thermal resistance as it progresses through development so that physiological heat shock has little effect on development to the blastocyst stage by Day 5 after insemination. Here, experiments using 3' tag digital gene expression (3'DGE) and real-time PCR were conducted to determine changes in the transcriptome of morula-stage bovine embryos in response to heat shock (40 degrees C for 8 h) that could be associated with thermotolerance. RESULTS: Using 3'DGE, expression of 173 genes were modified by heat shock, with 94 genes upregulated by heat shock and 79 genes downregulated by heat shock. A total of 38 differentially-regulated genes were associated with the ubiquitin protein, UBC. Heat shock increased expression of one heat shock protein gene, HSPB11, and one heat shock protein binding protein, HSPBP1, tended to increase expression of HSPA1A and HSPB1, but did not affect expression of 64 other genes encoding heat shock proteins, heat shock transcription factors or proteins interacting with heat shock proteins. Moreover, heat shock increased expression of five genes associated with oxidative stress (AKR7A2, CBR1, GGH, GSTA4, and MAP2K5), decreased expression of HIF3A, but did not affect expression of 42 other genes related to free radical metabolism. Heat shock also had little effect on genes involved in embryonic development. Effects of heat shock for 2, 4 and 8 h on selected heat shock protein and antioxidant genes were also evaluated by real-time PCR. Heat shock increased steady-state amounts of mRNA for HSPA1A (P<0.05) and tended to increase expression of HSP90AA1 (P<0.07) but had no effect on expression of SOD1 or CAT. CONCLUSIONS: Changes in the transcriptome of the heat-shocked bovine morula indicate that the embryo is largely resistant to effects of heat shock. As a result, transcription of genes involved in thermal protection is muted and there is little disruption of gene networks involved in embryonic development. It is likely that the increased resistance of morula-stage embryos to heat shock as compared to embryos at earlier stages of development is due in part to developmental acquisition of mechanisms to prevent accumulation of denatured proteins and free radical damage.


Asunto(s)
Bovinos/embriología , Desarrollo Embrionario , Respuesta al Choque Térmico/genética , Calor , Mórula/fisiología , Transcriptoma/genética , Animales , Antioxidantes , Blastocisto/fisiología , Supervivencia Celular/genética , Expresión Génica , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Estrés Oxidativo/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Int Immunol ; 24(9): 593-603, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22836021

RESUMEN

Mast cells (MCs) are developed from hematopoietic progenitor cells and play an important role in inflammation. Study of the kinetics of development and accumulation of primate MC in vivo is crucial for the control of human inflammatory diseases, as evolution of the immune system is quite rapid and inflammation including MC response is considered to be different between mouse and human. In the present study, we examined the development of MC from hematopoietic progenitors of Callithrix jacchus (common marmoset), an experimental animal of nonhuman primates. Bone marrow cells were fractionated for the expression of CD34 and CD117 by cell sorting. MCs were developed in vitro or by transplanting the cells to NOD/SCID/IL-2γc knockout (NOG) mice. In vitro culture of CD34(+)CD117(+) (double positive, DP) cells with stem cell factor could generate high-affinity Fc epsilon receptor (FcεR)-expressing CD117(+) cells with typical granules. The developed MC released ß-hexosaminidase and produced leukotriene C(4) after the stimulation of FcεRI. Transplantation of DP cells gave rise to a marked expansion of CD34(-)CD45(+)CD117(+)FcεR(+) cells in NOG mice. They expressed transcripts encoding chymase 1 and tryptase ß. Differentiation of CD34(-)CD117(+) cells to MCs was relatively limited compared with the DP cells, similarly to human MCs. These results suggest that this marmoset system provides a good model for human MC development.


Asunto(s)
Biomarcadores/metabolismo , Células de la Médula Ósea/inmunología , Callithrix/inmunología , Mastocitos/inmunología , Células Madre/inmunología , Animales , Antígenos CD34/metabolismo , Diferenciación Celular , Proliferación Celular , Separación Celular , Células Cultivadas , Citometría de Flujo , Humanos , Mastocitos/trasplante , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Modelos Animales , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptores de IgE/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA