Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 543(7646): 507-512, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28297715

RESUMEN

Maternally inherited 15q11-13 chromosomal triplications cause a frequent and highly penetrant type of autism linked to increased gene dosages of UBE3A, which encodes a ubiquitin ligase with transcriptional co-regulatory functions. Here, using in vivo mouse genetics, we show that increasing UBE3A in the nucleus downregulates the glutamatergic synapse organizer Cbln1, which is needed for sociability in mice. Epileptic seizures also repress Cbln1 and are found to expose sociability impairments in mice with asymptomatic increases in UBE3A. This Ube3a-seizure synergy maps to glutamate neurons of the midbrain ventral tegmental area (VTA), where Cbln1 deletions impair sociability and weaken glutamatergic transmission. We provide preclinical evidence that viral-vector-based chemogenetic activation of, or restoration of Cbln1 in, VTA glutamatergic neurons reverses the sociability deficits induced by Ube3a and/or seizures. Our results suggest that gene and seizure interactions in VTA glutamatergic neurons impair sociability by downregulating Cbln1, a key node in the expanding protein interaction network of autism genes.


Asunto(s)
Trastorno Autístico/genética , Regulación hacia Abajo , Proteínas del Tejido Nervioso/deficiencia , Precursores de Proteínas/deficiencia , Convulsiones/psicología , Conducta Social , Ubiquitina-Proteína Ligasas/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Trastorno Autístico/fisiopatología , Trastorno Autístico/psicología , Núcleo Celular/metabolismo , Femenino , Ácido Glutámico/metabolismo , Masculino , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Precursores de Proteínas/biosíntesis , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , ARN Mensajero/metabolismo , Transmisión Sináptica , Ubiquitina-Proteína Ligasas/genética
2.
Brain ; 137(Pt 11): 2984-96, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25234641

RESUMEN

Leucin-rich, glioma inactivated 1 (LGI1) is a secreted protein linked to human seizures of both genetic and autoimmune aetiology. Mutations in the LGI1 gene are responsible for autosomal dominant temporal lobe epilepsy with auditory features, whereas LGI1 autoantibodies are involved in limbic encephalitis, an acquired epileptic disorder associated with cognitive impairment. We and others previously reported that Lgi1-deficient mice have early-onset spontaneous seizures leading to premature death at 2-3 weeks of age. Yet, where and when Lgi1 deficiency causes epilepsy remains unknown. To address these questions, we generated Lgi1 conditional knockout (cKO) mice using a set of universal Cre-driver mouse lines. Selective deletion of Lgi1 was achieved in glutamatergic pyramidal neurons during embryonic (Emx1-Lgi1cKO) or late postnatal (CaMKIIα-Lgi1cKO) developmental stages, or in gamma amino butyric acidergic (GABAergic) parvalbumin interneurons (PV-Lgi1cKO). Emx1-Lgi1cKO mice displayed early-onset and lethal seizures, whereas CaMKIIα-Lgi1cKO mice presented late-onset occasional seizures associated with variable reduced lifespan. In contrast, neither spontaneous seizures nor increased seizure susceptibility to convulsant were observed when Lgi1 was deleted in parvalbumin interneurons. Together, these data showed that LGI1 depletion restricted to pyramidal cells is sufficient to generate seizures, whereas seizure thresholds were unchanged after depletion in gamma amino butyric acidergic parvalbumin interneurons. We suggest that LGI1 secreted from excitatory neurons, but not parvalbumin inhibitory neurons, makes a major contribution to the pathogenesis of LGI1-related epilepsies. Our data further indicate that LGI1 is required from embryogenesis to adulthood to achieve proper circuit functioning.


Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Proteínas/fisiología , Convulsiones/etiología , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/fisiopatología , Electroencefalografía , Embrión de Mamíferos/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Proteínas/genética , Células Piramidales/metabolismo , Convulsiones/genética
3.
J Neurosci ; 32(3): 903-10, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22262888

RESUMEN

Retinogeniculate connections undergo postnatal refinement in the developing visual system. Here we report that non-ion channel epilepsy gene LGI1 (leucine-rich glioma-inactivated), mutated in human autosomal dominant lateral temporal lobe epilepsy (ADLTE), regulates postnatal pruning of retinal axons in visual relay thalamus. By introducing an ADLTE-associated truncated mutant LGI1 (836delC) or excess full-length LGI1 into transgenic mice, we found that mutant LGI1 blocks, whereas excess LGI1 accelerates, retinogeniculate axon pruning. The normal postnatal single fiber strengthening was arrested by mutant LGI1 and, contrastingly, was enhanced by excess wild-type LGI1. The maximum response of the retinogeniculate synapses, conversely, remained the same in mature LGI1 transgenic mice, indicating that mutant LGI1 blocks, whereas excess wild-type LGI1 promotes, weak axon fiber elimination. Heterozygous deletion of the LGI1 gene, as found in ADLTE patients, inhibited postnatal retinogeniculate synapse elimination, an effect similar to the ADLTE truncated mutant LGI1. The results identify sensory axon remodeling defects in a sensory aura-associated human epilepsy disorder.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Cuerpos Geniculados/citología , Cuerpos Geniculados/crecimiento & desarrollo , Neuronas/fisiología , Proteínas/metabolismo , Sinapsis/fisiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Biofisica , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/genética , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/fisiología , Técnicas de Placa-Clamp , Proteínas/genética , Tiempo de Reacción/genética , Receptores AMPA/metabolismo , Sinapsis/genética
4.
Commun Biol ; 6(1): 347, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997626

RESUMEN

SINE-VNTR-Alu (SVA) retrotransposons arose and expanded in the genome of hominoid primates concurrent with the slowing of brain maturation. We report genes with intronic SVA transposons are enriched for neurodevelopmental disease and transcribed into long non-coding SVA-lncRNAs. Human-specific SVAs in microcephaly CDK5RAP2 and epilepsy SCN8A gene introns repress their expression via transcription factor ZNF91 to delay neuronal maturation. Deleting the SVA in CDK5RAP2 initiates multi-dimensional and in SCN8A selective sodium current neuronal maturation by upregulating these genes. SVA-lncRNA AK057321 forms RNA:DNA heteroduplexes with the genomic SVAs and upregulates these genes to initiate neuronal maturation. SVA-lncRNA AK057321 also promotes species-specific cortex and cerebellum-enriched expression upregulating human genes with intronic SVAs (e.g., HTT, CHAF1B and KCNJ6) but not mouse orthologs. The diversity of neuronal genes with intronic SVAs suggest this hominoid-specific SVA transposon-based gene regulatory mechanism may act at multiple steps to specialize and achieve neoteny of the human brain.


Asunto(s)
ARN Largo no Codificante , Retroelementos , Animales , Humanos , Retroelementos/genética , ARN Largo no Codificante/genética , Repeticiones de Minisatélite , Elementos de Nucleótido Esparcido Corto , Primates/genética , Factor 1 de Ensamblaje de la Cromatina/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Proteínas del Tejido Nervioso/genética , Proteínas de Ciclo Celular/genética
5.
J Neurosci ; 30(10): 3857-64, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20220021

RESUMEN

The segregation and myelination of axons in the developing PNS, results from a complex series of cellular and molecular interactions between Schwann cells and axons. Previously we identified the Lgi4 gene (leucine-rich glioma-inactivated4) as an important regulator of myelination in the PNS, and its dysfunction results in arthrogryposis as observed in claw paw mice. Lgi4 is a secreted protein and a member of a small family of proteins that are predominantly expressed in the nervous system. Their mechanism of action is unknown but may involve binding to members of the Adam (A disintegrin and metalloprotease) family of transmembrane proteins, in particular Adam22. We found that Lgi4 and Adam22 are both expressed in Schwann cells as well as in sensory neurons and that Lgi4 binds directly to Adam22 without a requirement for additional membrane associated factors. To determine whether Lgi4-Adam22 function involves a paracrine and/or an autocrine mechanism of action we performed heterotypic Schwann cell sensory neuron cultures and cell type-specific ablation of Lgi4 and Adam22 in mice. We show that Schwann cells are the principal cellular source of Lgi4 in the developing nerve and that Adam22 is required on axons. Our results thus reveal a novel paracrine signaling axis in peripheral nerve myelination in which Schwann cell secreted Lgi4 functions through binding of axonal Adam22 to drive the differentiation of Schwann cells.


Asunto(s)
Proteínas ADAM/fisiología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/fisiología , Células de Schwann/fisiología , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/genética , Proteínas ADAM/biosíntesis , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Animales , Animales Recién Nacidos , Línea Celular , Células Cultivadas , Proteínas de la Matriz Extracelular/fisiología , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Vaina de Mielina/genética , Vaina de Mielina/fisiología , Vaina de Mielina/ultraestructura , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica/genética , Ratas , Células de Schwann/metabolismo , Células de Schwann/ultraestructura , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/ultraestructura
6.
Nat Neurosci ; 9(1): 76-84, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16341215

RESUMEN

Peripheral nerve development results from multiple cellular interactions between axons, Schwann cells and the surrounding mesenchymal tissue. The delayed axonal sorting and hypomyelination throughout the peripheral nervous system of claw paw (clp) mutant mice suggest that the clp gene product is critical for these interactions. Here we identify the clp mutation as a 225-bp insertion in the Lgi4 gene. Lgi4 encodes a secreted and glycosylated leucine-rich repeat protein and is expressed in Schwann cells. The clp mutation affects Lgi4 mRNA splicing, resulting in a mutant protein that is retained in the cell. Additionally, siRNA-mediated downregulation of Lgi4 in wild-type neuron-Schwann cell cocultures inhibits myelination, whereas exogenous Lgi4 restores myelination in clp/clp cultures. Thus, the abnormalities observed in clp mice are attributable to the loss of Lgi4 function, and they identify Lgi4 as a new component of Schwann cell signaling pathway(s) that controls axon segregation and myelin formation.


Asunto(s)
Deformidades del Pie/genética , Mutación/fisiología , Sistema Nervioso Periférico/crecimiento & desarrollo , Sistema Nervioso Periférico/fisiología , Proteínas/fisiología , Secuencia de Aminoácidos , Animales , Axones/fisiología , Secuencia de Bases , Clonación Molecular , Técnicas de Cocultivo , Elementos Transponibles de ADN , ADN Complementario/biosíntesis , ADN Complementario/genética , Regulación hacia Abajo/genética , Regulación hacia Abajo/fisiología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Prueba de Complementación Genética , Genotipo , Inmunohistoquímica , Hibridación in Situ , Lentivirus/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Vaina de Mielina/fisiología , Proteínas del Tejido Nervioso , Neuronas Aferentes/fisiología , Fenotipo , Proteínas/genética , ARN Interferente Pequeño/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células de Schwann/fisiología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA