RESUMEN
Rapid global warming is severely impacting Arctic ecosystems and is predicted to transform the abundance, distribution and genetic diversity of Arctic species, though these linkages are poorly understood. We address this gap in knowledge using palaeogenomics to examine how earlier periods of global warming influenced the genetic diversity of Atlantic walrus (Odobenus rosmarus rosmarus), a species closely associated with sea ice and shallow-water habitats. We analysed 82 ancient and historical Atlantic walrus mitochondrial genomes (mitogenomes), including now-extinct populations in Iceland and the Canadian Maritimes, to reconstruct the Atlantic walrus' response to Arctic deglaciation. Our results demonstrate that the phylogeography and genetic diversity of Atlantic walrus populations was initially shaped by the last glacial maximum (LGM), surviving in distinct glacial refugia, and subsequently expanding rapidly in multiple migration waves during the late Pleistocene and early Holocene. The timing of diversification and establishment of distinct populations corresponds closely with the chronology of the glacial retreat, pointing to a strong link between walrus phylogeography and sea ice. Our results indicate that accelerated ice loss in the modern Arctic may trigger further dispersal events, likely increasing the connectivity of northern stocks while isolating more southerly stocks putatively caught in small pockets of suitable habitat.
RESUMEN
Divergence in the face of high dispersal capabilities is a documented but poorly understood phenomenon. The white-tailed eagle (Haliaeetus albicilla) has a large geographic dispersal capability and should theoretically be able to maintain genetic homogeneity across its dispersal range. However, following analysis of the genomic variation of white-tailed eagles, from both historical and contemporary samples, clear signatures of ancient biogeographic substructure across Europe and the North-East Atlantic is observed. The greatest genomic differentiation was observed between island (Greenland and Iceland) and mainland (Denmark, Norway and Estonia) populations. The two island populations share a common ancestry from a single mainland population, distinct from the other sampled mainland populations, and despite the potential for high connectivity between Iceland and Greenland they are well separated from each other and are characterized by inbreeding and little variation. Temporal differences also highlight a pattern of regional populations persisting despite the potential for admixture. All sampled populations generally showed a decline in effective population size over time, which may have been shaped by four historical events: (1) Isolation of refugia during the last glacial period 110-115,000 years ago, (2) population divergence following the colonization of the deglaciated areas ~10,000 years ago, (3) human population expansion, which led to the settlement in Iceland ~1100 years ago, and (4) human persecution and exposure to toxic pollutants during the last two centuries.
Asunto(s)
Águilas , Contaminantes Ambientales , Animales , Humanos , Águilas/genética , Europa (Continente) , Noruega , Genómica , Variación Genética/genéticaRESUMEN
Betula pubescens Ehrh. (mountain birch) is the only forest-forming tree in Iceland. Since human settlement (874 AD), the continuous 25,000 to 30,000 km2 forest has shrunk to 1.200 km2 of fragmented patches, making it a good object to study population genetic consequences of habitat fragmentation and disturbance. Further, genetic studies have also shown that hybridization between the tetraploid (2n = 56) B. pubescens and the diploid (2n = 28) Betula nana L. (dwarf birch) occurs among Iceland's natural populations. This study assessed the genetic variation within and among 11 birch forests remaining across Iceland. Genotype-by-sequencing methodology provided a total of 24,585 single nucleotide polymorphisms (SNP´s), with a minor allele frequency >5% for genetic analyses. The analysis showed similar diversity within forests, suggesting that fragmentation and hybridization have had a limited effect on the genetic variation within sites. A clear genetic divergence is found among forests from the different regions of Iceland that may reflect historical isolation; the differentiation between forests increased with geographic distances reflecting isolation by distance. Information on the distribution of genetic variation of birch in Iceland is essential for its conservation and to establish genotype-phenotype associations to predict responses to new environmental conditions imposed by climate change and novel biotic/abiotic stressors.
Asunto(s)
Betula , Bosques , Humanos , Betula/genética , Islandia , Tetraploidía , Variación GenéticaRESUMEN
BACKGROUND: Whole genomes are commonly assembled into a collection of scaffolds and often lack annotations of autosomes, sex chromosomes, and organelle genomes (i.e., mitochondrial and chloroplast). As these chromosome types differ in effective population size and can have highly disparate evolutionary histories, it is imperative to take this information into account when analysing genomic variation. Here we assessed the accuracy of four methods for identifying the homogametic sex chromosome in a small population using two whole genome sequences (WGS) and 133 RAD sequences of white-tailed eagles (Haliaeetus albicilla): i) difference in read depth per scaffold in a male and a female, ii) heterozygosity per scaffold in a male and a female, iii) mapping to the reference genome of a related species (chicken) with annotated sex chromosomes, and iv) analysis of SNP-loadings from a principal components analysis (PCA), based on the low-depth RADseq data. RESULTS: The best performing approach was the reference mapping (method iii), which identified 98.12% of the expected homogametic sex chromosome (Z). Read depth per scaffold (method i) identified 86.41% of the homogametic sex chromosome with few false positives. SNP-loading scores (method iv) identified 78.6% of the Z-chromosome and had a false positive discovery rate of more than 10%. Heterozygosity per scaffold (method ii) did not provide clear results due to a lack of diversity in both the Z and autosomal chromosomes, and potential interference from the heterogametic sex chromosome (W). The evaluation of these methods also revealed 10 Mb of putative PAR and gametologous regions. CONCLUSION: Identification of the homogametic sex chromosome in a small population is best accomplished by reference mapping or examining differences in read depth between sexes.
Asunto(s)
Genoma , Cromosomas Sexuales , Animales , Femenino , Genómica , Heterocigoto , Homocigoto , Masculino , Cromosomas Sexuales/genéticaRESUMEN
There is a growing body of evidence demonstrating the impacts of human arrival in new "pristine" environments, including terrestrial habitat alterations and species extinctions. However, the effects of marine resource utilization prior to industrialized whaling, sealing, and fishing have largely remained understudied. The expansion of the Norse across the North Atlantic offers a rare opportunity to study the effects of human arrival and early exploitation of marine resources. Today, there is no local population of walruses on Iceland, however, skeletal remains, place names, and written sources suggest that walruses existed, and were hunted by the Norse during the Settlement and Commonwealth periods (870-1262 AD). This study investigates the timing, geographic distribution, and genetic identity of walruses in Iceland by combining historical information, place names, radiocarbon dating, and genomic analyses. The results support a genetically distinct, local population of walruses that went extinct shortly after Norse settlement. The high value of walrus products such as ivory on international markets likely led to intense hunting pressure, which-potentially exacerbated by a warming climate and volcanism-resulted in the extinction of walrus on Iceland. We show that commercial hunting, economic incentives, and trade networks as early as the Viking Age were of sufficient scale and intensity to result in significant, irreversible ecological impacts on the marine environment. This is to one of the earliest examples of local extinction of a marine species following human arrival, during the very beginning of commercial marine exploitation.
Asunto(s)
Extinción Biológica , Genoma Mitocondrial , Migración Humana/historia , Morsas/genética , Animales , Historia Medieval , Islandia , FilogeografíaRESUMEN
Arctic foxes Vulpes lagopus (L.) display a sharp 3- to 5-year fluctuation in population size where lemmings are their main prey. In areas devoid of lemmings, such as Iceland, they do not experience short-term fluctuations. This study focusses on the population dynamics of the arctic fox in Iceland and how it is shaped by its main prey populations. Hunting statistics from 1958-2003 show that the population size of the arctic fox was at a maximum in the 1950s, declined to a minimum in the 1970s, and increased steadily until 2003. Analysis of the arctic fox population size and their prey populations suggests that fox numbers were limited by rock ptarmigan numbers during the decline period. The recovery of the arctic fox population was traced mostly to an increase in goose populations, and favourable climatic conditions as reflected by the Subpolar Gyre. These results underscore the flexibility of a generalist predator and its responses to shifting food resources and climate changes.
Asunto(s)
Aves , Cambio Climático , Clima , Dieta , Ecosistema , Zorros/fisiología , Conducta Predatoria , Adaptación Fisiológica , Animales , Anseriformes , Arvicolinae , Conducta Alimentaria , Galliformes , Humanos , Islandia , Densidad de Población , Dinámica PoblacionalRESUMEN
We recently described an association between risk of type 2diabetes and variants in the transcription factor 7-like 2 gene (TCF7L2; formerly TCF4), with a population attributable risk (PAR) of 17%-28% in three populations of European ancestry. Here, we refine the definition of the TCF7L2 type 2diabetes risk variant, HapB(T2D), to the ancestral T allele of a SNP, rs7903146, through replication in West African and Danish type 2 diabetes case-control studies and an expanded Icelandic study. We also identify another variant of the same gene, HapA, that shows evidence of positive selection in East Asian, European and West African populations. Notably, HapA shows a suggestive association with body mass index and altered concentrations of the hunger-satiety hormones ghrelin and leptin in males, indicating that the selective advantage of HapA may have been mediated through effects on energy metabolism.
Asunto(s)
Evolución Biológica , Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleótido Simple , Factores de Transcripción TCF/genética , Pueblo Asiatico , Población Negra , Índice de Masa Corporal , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Haplotipos , Humanos , Islandia , Masculino , Riesgo , Selección Genética , Proteína 2 Similar al Factor de Transcripción 7 , Población BlancaRESUMEN
Atlantic cod (Gadus morhua) vertebrae from archaeological sites were used to study the history of the Icelandic Atlantic cod population in the time period of 1500-1990. Specifically, we used coalescence modelling to estimate population size and fluctuations from the sequence diversity at the cytochrome b (cytb) and Pantophysin I (PanI) loci. The models are consistent with an expanding population during the warm medieval period, large historical effective population size (NE), a marked bottleneck event at 1400-1500 and a decrease in NE in early modern times. The model results are corroborated by the reduction of haplotype and nucleotide variation over time and pairwise population distance as a significant portion of nucleotide variation partitioned across the 1550 time mark. The mean age of the historical fished stock is high in medieval times with a truncation in age in early modern times. The population size crash coincides with a period of known cooling in the North Atlantic, and we conclude that the collapse may be related to climate or climate-induced ecosystem change.
Asunto(s)
Gadus morhua/clasificación , Gadus morhua/genética , Proteínas Mitocondriales/genética , Animales , Clima , Citocromos b/genética , Citocromos b/metabolismo , Demografía , Ecosistema , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Gadus morhua/fisiología , Islandia , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Dinámica Poblacional , Análisis de Secuencia de ADN , Columna Vertebral/química , Sinaptofisina/genética , Sinaptofisina/metabolismo , Factores de TiempoRESUMEN
Walrus ivory was a prized commodity in medieval Europe and was supplied by Norse intermediaries who expanded across the North Atlantic, establishing settlements in Iceland and Greenland. However, the precise sources of the traded ivory have long remained unclear, raising important questions about the sustainability of commercial walrus harvesting, the extent to which Greenland Norse were able to continue mounting their own long-range hunting expeditions, and the degree to which they relied on trading ivory with the various Arctic Indigenous peoples that they were starting to encounter. We use high-resolution genomic sourcing methods to track walrus artifacts back to specific hunting grounds, demonstrating that Greenland Norse obtained ivory from High Arctic waters, especially the North Water Polynya, and possibly from the interior Canadian Arctic. These results substantially expand the assumed range of Greenland Norse ivory harvesting activities and support intriguing archaeological evidence for substantive interactions with Thule Inuit, plus possible encounters with Tuniit (Late Dorset Pre-Inuit).
Asunto(s)
Morsas , Groenlandia , Regiones Árticas , Humanos , Animales , ArqueologíaRESUMEN
Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species' joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union's Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity.
Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Conservación de los Recursos Naturales/métodos , Europa (Continente) , Ecosistema , Variación GenéticaRESUMEN
Atlantic cod is a keystone species that remains among the most economically important demersal fish in the North Atlantic. Throughout its distribution range, Atlantic cod is composed of populations with varying environmental preferences and migratory propensities. This life-history variation is likely to have contributed to the niche width and large population sizes of Atlantic cod, and its relative resilience to environmental change and exploitation. The Icelandic cod stock is currently managed as a single unit, but early research indicates population variation by depth and temperature and distinct offshore and inshore spawning components. Pelagic 0-group juveniles from different spawning grounds coexist in nursery areas around Iceland, but their genetic composition or habitat partitioning had not been examined post benthic settlement. In the current study we examine the genetic composition of Atlantic cod juvenile aggregations at nearshore nursery grounds in NW-Iceland and report distinct segregation by the depth of offshore and inshore juvenile cod. The physiological mechanism of this segregation is not known, but the pattern demonstrates the need to consider population structure at nursery grounds in the application of marine spatial planning and other area-based conservation tools.
Asunto(s)
Gadus morhua , Rasgos de la Historia de Vida , Animales , Gadus morhua/genética , Peces , Ecosistema , Densidad de Población , Océano AtlánticoRESUMEN
The Icelandic population has been sampled in many disease association studies, providing a strong motivation to understand the structure of this population and its ramifications for disease gene mapping. Previous work using 40 microsatellites showed that the Icelandic population is relatively homogeneous, but exhibits subtle population structure that can bias disease association statistics. Here, we show that regional geographic ancestries of individuals from Iceland can be distinguished using 292,289 autosomal single-nucleotide polymorphisms (SNPs). We further show that subpopulation differences are due to genetic drift since the settlement of Iceland 1100 years ago, and not to varying contributions from different ancestral populations. A consequence of the recent origin of Icelandic population structure is that allele frequency differences follow a null distribution devoid of outliers, so that the risk of false positive associations due to stratification is minimal. Our results highlight an important distinction between population differences attributable to recent drift and those arising from more ancient divergence, which has implications both for association studies and for efforts to detect natural selection using population differentiation.
Asunto(s)
Variación Genética , Genética de Población , Frecuencia de los Genes , Enfermedades Genéticas Congénitas/genética , Humanos , Islandia , Polimorfismo de Nucleótido SimpleRESUMEN
Fossil hydrothermal systems on Mars are important exploration targets because they may have once been habitable and could still preserve evidence of microbial life. We investigated microbial communities within an active lava-induced hydrothermal system associated with the 2014-2015 eruption of Holuhraun in Iceland as a Mars analogue. In 2016, the microbial composition in the lava-heated water differed substantially from that of the glacial river and spring water sources that fed into the system. Several taxonomic and metabolic groups were confined to the water emerging from the lava and some showed the highest sequence similarities to subsurface ecosystems, including to the predicted thermophilic and deeply branching Candidatus Acetothermum autotrophicum. Measurements show that the communities were affected by temperature and other environmental factors. In particular, comparing glacial river water incubated in situ (5.7°C, control) with glacial water incubated within a lava-heated stream (17.5°C, warm) showed that microbial abundance, richness, and diversity increased in the warm treatment compared with the control, with the predicted major metabolism shifting from lithotrophy toward organotrophy and possibly phototrophy. In addition, thermophilic bacteria isolated from the lava-heated water and a nearby acidic hydrothermal system included the known endospore-formers Geobacillus stearothermophilus and Paenibacillus cisolokensis as well as a potentially novel taxon within the order Hyphomicrobiales. Similar lava-water interactions on Mars could therefore have generated habitable environments for microbial communities.
Asunto(s)
Marte , Microbiota , Islandia , Temperatura , AguaRESUMEN
In many respects, freshwater springs can be considered as unique ecosystems on the fringe of aquatic habitats. This integrates their uniqueness in terms of stability of environmental metrics. The main objective of our study was to evaluate how environmental variables may shape invertebrate diversity and community composition in different freshwater spring types and habitats within. In order to do so, we sampled invertebrates from 49 springs in Iceland, where we included both limnocrene and rheocrene springs. At each site, samples were taken from the benthic substrate of the spring ("surface") and the upwelling groundwater at the spring source ("source"). To collect invertebrates from the spring sources we used a modified method of "electrobugging" and Surber sampler for collecting invertebrates from the surface. In total, 54 invertebrate taxa were identified, mostly Chironomidae (Diptera). Chironomid larvae also dominated in terms of abundance (67%), followed by Ostracoda (12%) and Copepoda (9%). The species composition in the surface samples differed considerably between rheocrene and limnocrene springs and was characterised by several indicator species. Alpha diversity was greater at the surface of springs than at the source, but the beta diversity was higher at the source. Diversity, as summarized by taxa richness and Shannon diversity, was negatively correlated with temperature at the surface. At the source, on the other hand, Shannon diversity increased with temperature. The community assembly in springs appears to be greatly affected by water temperature, with the source community of hot springs being more niche-assembled (i.e., affected by mechanisms of tolerance and adaptation) than the source community of cold springs, which is more dispersal-assembled (i.e., by mechanisms of drift and colonization).
Asunto(s)
Manantiales de Aguas Termales , Manantiales Naturales , Animales , Biodiversidad , Ecosistema , Agua Dulce , InvertebradosRESUMEN
Targeted sequencing is an increasingly popular next-generation sequencing (NGS) approach for studying populations that involves focusing sequencing efforts on specific parts of the genome of a species of interest. Methodologies and tools for designing targeted baits are scarce but in high demand. Here, we present specific guidelines and considerations for designing capture sequencing experiments for population genetics for both neutral genomic regions and regions subject to selection. We describe the bait design process for three diverse fish species: Atlantic salmon, Atlantic cod and tiger shark, which was carried out in our research group, and provide an evaluation of the performance of our approach across both historical and modern samples. The workflow used for designing these three bait sets has been implemented in the R-package supeRbaits, which encompasses our considerations and guidelines for bait design for the benefit of researchers and practitioners. The supeRbaits R-package is user-friendly and versatile. It is written in C++ and implemented in R. supeRbaits and its manual are available from Github: https://github.com/BelenJM/supeRbaits.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Animales , ADN/genética , Genética de Población , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , PecesRESUMEN
The amphipod Crangonyx islandicus is a recently discovered species endemic to Iceland. Populations of C. islandicus are highly structured geographically and genetically. The COI and 16S mitochondrial genes confine six monophyletic groups which have diverged for up to 5 million years within Iceland, and may present two cryptic species. To investigate the potential cryptic species status we analyse here the internal transcribed spacers (ITS1 and ITS2) and compare its variation with the patterns obtained with the mtDNA. The ITS regions present much less divergence among the geographic regions in comparison with the mtDNA, distances based on ITS1 are correlated with the COI distances as well as with geographic distances, but most of the variation is observed within individuals. The variation in the ITS region appears to have been shaped both by homogenization effect of concerted evolution and divergent evolution. A duplication of 269 base pairs is found in the ITS1 of all individuals from the southern populations, its divergence from its paralog appears to predate the split of the different groups within Iceland but some evidence point to rapid diversification after the split. This duplication does not affect the secondary structures found in the 3' and 5' ends of the sequence, suggested to have a role in the excision of the ITS1. Compensatory base changes within the ITS2 sequences which have been suggested to be a species indicator were not detected.
Asunto(s)
Anfípodos/genética , ADN Espaciador Ribosómico/química , Genes Mitocondriales , Variación Genética , Animales , Evolución Molecular , Orden Génico , Islandia , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , FilogeografíaRESUMEN
The amphipod superfamily Crangonyctoidea is distributed exclusively in freshwater habitats worldwide and is characteristic of subterranean habitats. Two members of the family, Crangonyx islandicus and Crymostygius thingvallensis, are endemic to Iceland and were recently discovered in groundwater underneath lava fields. Crangonyx islandicus belongs to a well-known genus with representatives both in North America and in Eurasia. Crymostygius thingvallensis defines a new family, Crymostygidae. Considering the incongruences observed recently between molecular and morphological taxonomy within subterranean species, we aim to assess the taxonomical status of the two species using molecular data. Additionally, the study contributes to the phylogenetic relationships among several crangonyctoidean species and specifically among species from four genera of the family Crangonyctidae. Given the available data we consider how the two Icelandic species could have colonized Iceland, by comparing geographical origin of the species with the phylogeny. Regions of two nuclear (18S and 28S rRNA) and two mitochondrial genes (16S rRNA and COI) for 20 different species of three families of the Crangonyctoidea were sequenced. Four different methods were used to align the RNA gene sequences and phylogenetic trees were constructed using bayesian and maximum likelihood analysis. The Crangonyctidae monophyly is supported. Crangonyx islandicus appeared more closely related to species from the Nearctic region. Crymostygius thingvallensis is clearly divergent from the other species of Crangonyctoidea. Crangonyx and Synurella genera are clearly polyphyletic and showed a geographical association, being split into a Nearctic and a Palearctic group. This research confirms that the studied species of Crangonyctidae share a common ancestor, which was probably widespread in the Northern hemisphere well before the break up of Laurasia. The Icelandic species are of particular interest since Iceland emerged after the separation of Eurasia and North America, is geographically isolated and has repeatedly been covered by glaciers during the Ice Age. The close relation between Crangonyx islandicus and North American species supports the hypothesis of the Trans-Atlantic land bridge between Greenland and Iceland which might have persisted until 6 million years ago. The status of the family Crymostygidae is supported, whereas Crangonyx islandicus might represent a new genus. As commonly observed in subterranean animals, molecular and morphological taxonomy led to different conclusions, probably due to convergent evolution of morphological traits. Our molecular analysis suggests that the family Crangonyctidae needs taxonomic revisions.
Asunto(s)
Anfípodos/clasificación , Anfípodos/genética , Evolución Molecular , Filogenia , Animales , Teorema de Bayes , Núcleo Celular/genética , ADN Mitocondrial/genética , Especiación Genética , Islandia , Funciones de Verosimilitud , Conformación de Ácido Nucleico , Alineación de Secuencia , Análisis de Secuencia de ADNRESUMEN
Hereditary cystatin C amyloid angiopathy (HCCAA) is an autosomal dominant disease with high penetrance, manifest by brain hemorrhages in young normotensive adults. In Iceland, this condition is caused by the L68Q mutation in the cystatin C gene, with contemporary carriers reaching an average age of only 30 years. Here, we report, based both on linkage disequilibrium and genealogical evidence, that all known copies of this mutation derive from a common ancestor born roughly 18 generations ago. Intriguingly, the genealogies reveal that obligate L68Q carriers born 1825 to 1900 experienced a drastic reduction in life span, from 65 years to the present-day average. At the same time, a parent-of-origin effect emerged, whereby maternal inheritance of the mutation was associated with a 9 year reduction in life span relative to paternal inheritance. As these trends can be observed in several different extended families, many generations after the mutational event, it seems likely that some environmental factor is responsible, perhaps linked to radical changes in the life-style of Icelanders during this period. A mutation with such radically different phenotypic effects in reaction to normal variation in human life-style not only opens the possibility of preventive strategies for HCCAA, but it may also provide novel insights into the complex relationship between genotype and environment in human disease.
Asunto(s)
Sustitución de Aminoácidos/genética , Cistatinas/genética , Tamización de Portadores Genéticos , Estilo de Vida , Longevidad/genética , Adolescente , Adulto , Anciano , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/mortalidad , Cistatina C , Femenino , Glutamina/genética , Humanos , Leucina/genética , Longevidad/fisiología , Masculino , Persona de Mediana Edad , Linaje , Caracteres SexualesRESUMEN
Buccinum undatum is a subtidal gastropod that exhibits clear spatial variation in several phenotypic shell traits (color, shape, and thickness) across its North Atlantic distribution. Studies of spatial phenotypic variation exist for the species; however, population genetic studies have thus far relied on a limited set of mitochondrial and microsatellite markers. Here, we greatly expand on previous work by characterizing population genetic structure in B. undatum across the North Atlantic from SNP variation obtained by RAD sequencing. There was a high degree of genetic differentiation between Canadian and European populations (Iceland, Faroe Islands, and England) consistent with the divergence of populations in allopatry (F ST > 0.57 for all pairwise comparisons). In addition, B. undatum populations within Iceland, the Faroe Islands, and England are typified by weak but significant genetic structuring following an isolation-by-distance model. Finally, we established a significant correlation between genetic structuring in Iceland and two phenotypic traits: shell shape and color frequency. The works detailed here enhance our understanding of genetic structuring in B. undatum and establish the species as an intriguing model for future genome-wide association studies.
RESUMEN
The genetic architecture of a phenotype can have considerable effects on the evolution of a trait or species. Characterizing genetic architecture provides insight into the complexity of a given phenotype and, potentially, the role of the phenotype in evolutionary processes like speciation. We use genome sequences to investigate the genetic basis of phenotypic variation in redpoll finches (Acanthis spp.). We demonstrate that variation in redpoll phenotype is broadly controlled by a ~55-Mb chromosomal inversion. Within this inversion, we find multiple candidate genes related to melanogenesis, carotenoid coloration, and bill shape, suggesting the inversion acts as a supergene controlling multiple linked traits. A latitudinal gradient in ecotype distribution suggests supergene driven variation in color and bill morphology are likely under environmental selection, maintaining supergene haplotypes as a balanced polymorphism. Our results provide a mechanism for the maintenance of ecotype variation in redpolls despite a genome largely homogenized by gene flow.