Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochim Biophys Acta ; 1838(12): 3118-29, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25135660

RESUMEN

Cell-penetrating peptides with the ability to escape endosomes and reach the target are of great value as delivery vectors for different bioactive cargoes and future treatment of human diseases. We have studied two such peptides, NickFect1 and NickFect51, both originated from stearylated transportan10 (PF3). To obtain more insight into the mechanism(s) of peptide delivery and the biophysical properties of an efficient vector system, we investigated the effect of different bioactive oligonucleotide cargoes on peptide-membrane perturbation and peptide structural induction. We studied the membrane interactions of the peptides with large unilamellar vesicles and compared their effects with parent peptides transportan10 and PF3. In addition, cellular uptake and peptide-mediated oligonucleotide delivery were analyzed. Calcein leakage experiments showed that similar to transportan10, NickFect51 caused a significant degree of membrane leakage, whereas NickFect1, similar to PF3, was less membrane perturbing. The results are in agreement with previously published results indicating that NickFect51 is a more efficient endosomal escaper. However, the presence of a large cargo like plasmid DNA inhibited NickFect's membrane perturbation and cellular uptake efficiency of the peptide was reduced. We conclude that the pathway for cellular uptake of peptide complexes is cargo dependent, whereas the endosomal escape efficacy depends on peptide hydrophobicity and chemical structure. For small interfering RNA delivery, NickFect51 appears to be optimal. The biophysical signature shows that the peptide alone causes membrane perturbation, but the cargo complex does not. These two biophysical characteristics of the peptide and its cargo complex may be the signature of an efficient delivery vector system.

2.
Biochim Biophys Acta ; 1828(5): 1365-73, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23357356

RESUMEN

Harnessing of a branched structure is a novel approach in the design of cell-penetrating peptides and it has provided highly efficient transfection reagents for intracellular delivery of nucleic acids. The new stearylated TP10 analogs, NickFects, condense plasmid DNA, splice correcting oligonucleotides and short interfering RNAs into stable nanoparticles with a size of 62-160nm. Such nanoparticles have a negative surface charge (-11 to -18mV) in serum containing medium and enable highly efficient gene expression, splice correction and gene silencing. One of the novel peptides, NickFect51 is capable of transfecting plasmid DNA into a large variety of cell lines, including refractory suspension and primary cells and in several cases exceeds the transfection level of commercially available reagent Lipofectamine™ 2000 without any cytotoxic side effects. Additionally we demonstrate the advantages of NickFect51 in a protein production system, QMCF technology, for expression and production of recombinant proteins in hardly transfectable suspension cells.


Asunto(s)
Péptidos de Penetración Celular/química , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Ácidos Nucleicos/genética , Secuencia de Aminoácidos , Animales , Células CHO , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Células Cultivadas , Cricetinae , Cricetulus , Vectores Genéticos/química , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Luciferasas/genética , Microscopía Electrónica de Transmisión , Nanopartículas/química , Nanopartículas/ultraestructura , Oligonucleótidos/genética , Plásmidos/química , Plásmidos/genética , ARN Interferente Pequeño/genética , Ácidos Esteáricos/química , Transfección/métodos
3.
Bioconjug Chem ; 24(10): 1721-32, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23981119

RESUMEN

In the current work we characterize the uptake mechanism of two NickFect family members, NF51 and NF1, related to the biological activity of transfected plasmid DNA (pDNA). Both vectors condense pDNA into small negatively charged nanoparticles that transfect HeLa cells with equally high efficacy and the delivery is mediated by SCARA3 and SCARA5 receptors. NF1 condenses DNA into less homogeneous and less stable nanoparticles than NF51. NF51/pDNA nanoparticles enter the cells via macropinocytosis, while NF1/pDNA complexes use clathrin- or caveolae-mediated endocytosis and macropinocytosis. Analysis of separated endosomal compartments uncovered lysomotropic properties of NF51 that was also proven by cotransfection with chloroquine. In summary we characterize how radical modifications in peptides, such as introducing a kink in the structure of NF51 or including extra negative charge by phospho-tyrosine substitution in NF1, resulted in equally high efficacy for gene delivery, although this efficacy is achieved by using differential transfection pathways.


Asunto(s)
ADN/administración & dosificación , Péptidos/química , Plásmidos/administración & dosificación , Transfección , Clatrina/metabolismo , ADN/química , ADN/genética , Endocitosis , Células HeLa , Humanos , Nanopartículas/química , Péptidos/síntesis química , Péptidos/metabolismo , Plásmidos/química , Plásmidos/genética
4.
Mol Ther Nucleic Acids ; 10: 28-35, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29499941

RESUMEN

Although advances in genomics and experimental gene therapy have opened new possibilities for treating otherwise incurable diseases, the transduction of nucleic acids into the cells and delivery in vivo remain challenging. The high molecular weight and anionic nature of nucleic acids require their packing into nanoparticles for the delivery. The efficacy of nanoparticle drugs necessitates the high bioactivity of constituents, but their distribution in organisms is mostly governed by the physical properties of nanoparticles, and therefore, generation of stable particles with strictly defined characteristics is highly essential. Using previously designed efficient cell-penetrating peptide NF55, we searched for strategies enabling control over the nanoparticle formation and properties to further improve transfection efficacy. The size of the NF55/pDNA nanoparticles correlates with the concentration of its constituents at the beginning of assembly, but characteristics of nanoparticles measured by DLS do not reliably predict the applicability of particles in in vivo studies. We introduce a new formulation approach called cryo-concentration, where we acquired stable and homogeneous nanoparticles for administration in vivo. The cryo-concentrated NF55/pDNA nanoparticles exhibit several advantages over standard formulation: They have long shelf-life and do not aggregate after reconstitution, have excellent stability against enzymatic degradation, and show significantly higher bioactivity in vivo.

5.
Mol Ther Nucleic Acids ; 7: 1-10, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28624185

RESUMEN

Cell-penetrating peptides (CPPs) are delivery vectors widely used to aid the transport of biologically active cargoes to intracellular targets. These cargoes include small interfering RNAs (siRNA) that are not naturally internalized by cells. Elucidating the complexities behind the formation of CPP and cargo complexes is crucial for understanding the processes related to their delivery. In this study, we used modified analogs of the CPP transportan10 and investigated the binding properties of these CPPs to siRNA, the formation parameters of the CPP/siRNA complexes, and their stabiliy to enzymatic degradation. We conclude that the pH dependent change of the net charge of the CPP may very well be the key factor leading to the high delivery efficiency and the optimal binding strength between CPPs to siRNAs, while the hydrophobicity, secondary structure of the CPP, and the positions of the positive charges are responsible for the stability of the CPP/siRNA particles. Also, CPPs with distinct hydrophobic and hydrophilic regions may assemble into nanoparticles that could be described as core-shell formulations.

6.
Sci Rep ; 7(1): 17056, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29213085

RESUMEN

Non-viral gene delivery systems have gained considerable attention as a promising alternative to viral delivery to treat diseases associated with aberrant gene expression. However, regardless of extensive research, only a little is known about the parameters that underline in vivo use of the nanoparticle-based delivery vectors. The modest efficacy and low safety of non-viral delivery are the two central issues that need to be addressed. We have previously characterized an efficient cell penetrating peptide, PF14, for in vivo applications. In the current work, we first develop an optimized formulation of PF14/pDNA nanocomplexes, which allows removal of the side-effects without compromising the bioefficacy in vivo. Secondly, based on the physicochemical complex formation studies and biological efficacy assessments, we develop a series of PF14 modifications with altered charge and fatty acid content. We show that with an optimal combination of overall charge and hydrophobicity in the peptide backbone, in vivo gene delivery can be augmented. Further combined with the safe formulation, systemic gene delivery lacking any side effects can be achieved.


Asunto(s)
Péptidos de Penetración Celular/genética , Ácidos Grasos/química , Lipopéptidos/genética , Transfección/métodos , Animales , Células CHO , Péptidos de Penetración Celular/química , Cricetinae , Cricetulus , Dispersión Dinámica de Luz , Femenino , Colorantes Fluorescentes/química , Lipopéptidos/química , Pulmón/metabolismo , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química
7.
J Drug Target ; 24(6): 508-19, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26460120

RESUMEN

Cell-penetrating peptides (CPPs) are efficient vehicles to transport bioactive molecules into the cells. Despite numerous studies the exact mechanism by which CPPs facilitate delivery of cargo to its intracellular target is still debated. The current work presents methods that can be used for tracking CPP/pDNA complexes through endosomal transport and show the role of endosomal transport in the delivery of cargo. Separation of endosomal vesicles by differential centrifugation enables to pinpoint the localization of delivered cargo without labeling it and gives important quantitative information about pDNA trafficing in certain endosomal compartments. Single particle tracking (SPT) allows following individual CPP/cargo complex through endosomal path in live cells, using fluoresently labled cargo and green fluoresent protein expressing cells. These two different methods show similar results about tested NickFect/pDNA complexes intracellular trafficing. NF51 facilitates rapid internalization of complexes into the cells, prolongs their stay in early endosomes and promotes release to cytosol. NF1 is less capable to induce endosomal release and higher amount of complexes are routed to lysosomes for degradation. Our findings offer potential delivery vector for in vivo applications, NF51, where endosomal entrapment has been allayed. Furthermore, these methods are valuable tools to study other CPP-based delivery systems.


Asunto(s)
Péptidos de Penetración Celular/administración & dosificación , ADN/administración & dosificación , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Péptidos de Penetración Celular/metabolismo , Citosol/metabolismo , Endosomas/metabolismo , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/administración & dosificación , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Células HeLa , Humanos , Lisosomas/metabolismo , Plásmidos/administración & dosificación , Transporte de Proteínas
8.
Methods Mol Biol ; 1324: 303-15, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26202277

RESUMEN

Nucleic acids can be utilized in gene therapy to restore, alter, or silence gene functions. In order to reveal the biological activity nucleic acids have to reach their intracellular targets by passing through the plasma membrane, which is impermeable for these large and negatively charged molecules. Cell-penetrating peptides (CPPs) condense nucleic acids into nanoparticles using non-covalent complexation strategy and mediate their delivery into the cell, whereas the physicochemical parameters of the nanoparticles determine the interactions with the membranes, uptake mechanism, and subsequent intracellular fate. The nanoparticles are mostly internalized by endocytosis that leads to the entrapment of them in endosomal vesicles. Therefore design of new CPPs that are applicable for non-covalent complex formation strategy and harness endosomolytic properties is highly vital. Here we demonstrate that PepFects and NickFects are efficient vectors for the intracellular delivery of various nucleic acids.This chapter describes how to form CPP/pDNA nanoparticles, evaluate stable nanoparticles formation, and assess gene delivery efficacy.


Asunto(s)
Péptidos de Penetración Celular/química , Técnicas de Transferencia de Gen , Nanopartículas/química , Ácidos Nucleicos/administración & dosificación , Oligonucleótidos/administración & dosificación , Técnicas de Cultivo de Célula/métodos , Péptidos de Penetración Celular/metabolismo , Endocitosis , Células HeLa , Humanos , Indicadores y Reactivos , Nanopartículas/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Oligonucleótidos/química , Oligonucleótidos/genética , Plásmidos/administración & dosificación , Plásmidos/química , Plásmidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA