Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 168(5): 904-915.e10, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28235200

RESUMEN

Sexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa-animals, plants, and protists (including important human pathogens like Plasmodium)-suggests that many eukaryotic organisms share a common gamete fusion mechanism. Here, we report combined bioinformatic, biochemical, mutational, and X-ray crystallographic studies on the unicellular alga Chlamydomonas reinhardtii HAP2 that reveal homology to class II viral membrane fusion proteins. We further show that targeting the segment corresponding to the fusion loop by mutagenesis or by antibodies blocks gamete fusion. These results demonstrate that HAP2 is the gamete fusogen and suggest a mechanism of action akin to viral fusion, indicating a way to block Plasmodium transmission and highlighting the impact of virus-cell genetic exchanges on the evolution of eukaryotic life.


Asunto(s)
Chlamydomonas/metabolismo , Proteínas de la Fusión de la Membrana/química , Proteínas de Plantas/química , Plasmodium/metabolismo , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Evolución Biológica , Chlamydomonas/citología , Cristalografía por Rayos X , Células Germinativas/química , Células Germinativas/metabolismo , Proteínas de la Fusión de la Membrana/genética , Proteínas de la Fusión de la Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmodium/citología , Dominios Proteicos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
2.
EMBO Rep ; 23(7): e53600, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35607830

RESUMEN

The dengue virus nonstructural protein 1 (NS1) is a secreted virulence factor that modulates complement, activates immune cells and alters endothelial barriers. The molecular basis of these events remains incompletely understood. Here we describe a functional high affinity complex formed between NS1 and human high-density lipoproteins (HDL). Collapse of the soluble NS1 hexamer upon binding to the lipoprotein particle leads to the anchoring of amphipathic NS1 dimeric subunits into the HDL outer layer. The stable complex can be visualized by electron microscopy as a spherical HDL with rod-shaped NS1 dimers protruding from the surface. We further show that the assembly of NS1-HDL complexes triggers the production of pro-inflammatory cytokines in human primary macrophages while NS1 or HDL alone do not. Finally, we detect NS1 in complex with HDL and low-density lipoprotein (LDL) particles in the plasma of hospitalized dengue patients and observe NS1-apolipoprotein E-positive complexes accumulating overtime. The functional reprogramming of endogenous lipoprotein particles by NS1 as a means to exacerbate systemic inflammation during viral infection provides a new paradigm in dengue pathogenesis.


Asunto(s)
Virus del Dengue , Dengue , Dengue/metabolismo , Virus del Dengue/fisiología , Humanos , Lipoproteínas HDL/metabolismo , Fagocitosis , Proteínas no Estructurales Virales/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(49): 31398-31409, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229580

RESUMEN

Toxin-antitoxin systems are found in many bacterial chromosomes and plasmids with roles ranging from plasmid stabilization to biofilm formation and persistence. In these systems, the expression/activity of the toxin is counteracted by an antitoxin, which, in type I systems, is an antisense RNA. While the regulatory mechanisms of these systems are mostly well defined, the toxins' biological activity and expression conditions are less understood. Here, these questions were investigated for a type I toxin-antitoxin system (AapA1-IsoA1) expressed from the chromosome of the human pathogen Helicobacter pylori We show that expression of the AapA1 toxin in H. pylori causes growth arrest associated with rapid morphological transformation from spiral-shaped bacteria to round coccoid cells. Coccoids are observed in patients and during in vitro growth as a response to different stress conditions. The AapA1 toxin, first molecular effector of coccoids to be identified, targets H. pylori inner membrane without disrupting it, as visualized by cryoelectron microscopy. The peptidoglycan composition of coccoids is modified with respect to spiral bacteria. No major changes in membrane potential or adenosine 5'-triphosphate (ATP) concentration result from AapA1 expression, suggesting coccoid viability. Single-cell live microscopy tracking the shape conversion suggests a possible association of this process with cell elongation/division interference. Oxidative stress induces coccoid formation and is associated with repression of the antitoxin promoter and enhanced processing of its transcript, leading to an imbalance in favor of AapA1 toxin expression. Our data support the hypothesis of viable coccoids with characteristics of dormant bacteria that might be important in H. pylori infections refractory to treatment.


Asunto(s)
Helicobacter pylori/citología , Helicobacter pylori/efectos de los fármacos , Péptidos/farmacología , Sistemas Toxina-Antitoxina , Adenosina Trifosfato/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Helicobacter pylori/ultraestructura , Peróxido de Hidrógeno/toxicidad , Espacio Intracelular/metabolismo , Cinética , Potenciales de la Membrana/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Peptidoglicano/metabolismo
4.
PLoS Biol ; 17(1): e3000122, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30657780

RESUMEN

PolD is an archaeal replicative DNA polymerase (DNAP) made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2). Recently, we reported the individual crystal structures of the DP1 and DP2 catalytic cores, thereby revealing that PolD is an atypical DNAP that has all functional properties of a replicative DNAP but with the catalytic core of an RNA polymerase (RNAP). We now report the DNA-bound cryo-electron microscopy (cryo-EM) structure of the heterodimeric DP1-DP2 PolD complex from Pyrococcus abyssi, revealing a unique DNA-binding site. Comparison of PolD and RNAPs extends their structural similarities and brings to light the minimal catalytic core shared by all cellular transcriptases. Finally, elucidating the structure of the PolD DP1-DP2 interface, which is conserved in all eukaryotic replicative DNAPs, clarifies their evolutionary relationships with PolD and sheds light on the domain acquisition and exchange mechanism that occurred during the evolution of the eukaryotic replisome.


Asunto(s)
Proteínas de Unión al ADN/ultraestructura , Factor de Transcripción DP1/ultraestructura , Factores de Transcripción/ultraestructura , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Dominio Catalítico , Microscopía por Crioelectrón/métodos , ADN/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/ultraestructura , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Dominios Proteicos/genética , Subunidades de Proteína/metabolismo , Pyrococcus abyssi/metabolismo , Pyrococcus abyssi/ultraestructura , Factor de Transcripción DP1/metabolismo , Factores de Transcripción/metabolismo
5.
PLoS Biol ; 16(8): e2006357, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30102690

RESUMEN

HAPLESS2 (HAP2) is a broadly conserved, gamete-expressed transmembrane protein that was shown recently to be structurally homologous to viral class II fusion proteins, which initiate fusion with host cells via insertion of fusion loops into the host membrane. However, the functional conformation of the HAP2 fusion loops has remained unknown, as the reported X-ray structure of Chlamydomonas reinhardtii HAP2 lacked this critical region. Here, we report a structure-guided alignment that reveals diversification of the proposed HAP2 fusion loops. Representative crystal structures show that in flowering plants, HAP2 has a single prominent fusion loop projecting an amphipathic helix at its apex, while in trypanosomes, three small nonpolar loops of HAP2 are poised to interact with the target membrane. A detailed structure-function analysis of the Arabidopsis HAP2 amphipathic fusion helix defines key residues that are essential for membrane insertion and for gamete fusion. Our study suggests that HAP2 may have evolved multiple modes of membrane insertion to accommodate the diversity of membrane environments it has encountered during eukaryotic evolution.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Proteínas de Arabidopsis/ultraestructura , Proteínas Portadoras/fisiología , Proteínas Portadoras/ultraestructura , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Evolución Biológica , Proteínas Portadoras/metabolismo , Chlamydomonas/metabolismo , Eucariontes , Variación Genética/genética , Células Germinativas/metabolismo , Fusión de Membrana , Homología de Secuencia de Aminoácido
6.
Nature ; 523(7562): 555-60, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26200339

RESUMEN

Bacteria share their ecological niches with other microbes. The bacterial type VI secretion system is one of the key players in microbial competition, as well as being an important virulence determinant during bacterial infections. It assembles a nano-crossbow-like structure in the cytoplasm of the attacker cell that propels an arrow made of a haemolysin co-regulated protein (Hcp) tube and a valine-glycine repeat protein G (VgrG) spike and punctures the prey's cell wall. The nano-crossbow is stably anchored to the cell envelope of the attacker by a membrane core complex. Here we show that this complex is assembled by the sequential addition of three type VI subunits (Tss)-TssJ, TssM and TssL-and present a structure of the fully assembled complex at 11.6 Å resolution, determined by negative-stain electron microscopy. With overall C5 symmetry, this 1.7-megadalton complex comprises a large base in the cytoplasm. It extends in the periplasm via ten arches to form a double-ring structure containing the carboxy-terminal domain of TssM (TssMct) and TssJ that is anchored in the outer membrane. The crystal structure of the TssMct-TssJ complex coupled to whole-cell accessibility studies suggest that large conformational changes induce transient pore formation in the outer membrane, allowing passage of the attacking Hcp tube/VgrG spike.


Asunto(s)
Sistemas de Secreción Bacterianos , Proteínas de Escherichia coli/química , Escherichia coli/química , Lipopéptidos/química , Proteínas de la Membrana/química , Complejos Multiproteicos/biosíntesis , Complejos Multiproteicos/química , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografía por Rayos X , Citoplasma/química , Citoplasma/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biosíntesis , Lipopéptidos/biosíntesis , Proteínas de la Membrana/biosíntesis , Microscopía Electrónica , Modelos Moleculares , Periplasma/química , Periplasma/metabolismo , Porosidad , Estructura Terciaria de Proteína , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/química
7.
Biochem J ; 477(14): 2697-2714, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32726433

RESUMEN

Budding yeast septins are essential for cell division and polarity. Septins assemble as palindromic linear octameric complexes. The function and ultra-structural organization of septins are finely governed by their molecular polymorphism. In particular, in budding yeast, the end subunit can stand either as Shs1 or Cdc11. We have dissected, here, for the first time, the behavior of the Shs1 protomer bound to membranes at nanometer resolution, in complex with the other septins. Using electron microscopy, we have shown that on membranes, Shs1 protomers self-assemble into rings, bundles, filaments or two-dimensional gauzes. Using a set of specific mutants we have demonstrated a synergistic role of both nucleotides and lipids for the organization and oligomerization of budding yeast septins. Besides, cryo-electron tomography assays show that vesicles are deformed by the interaction between Shs1 oligomers and lipids. The Shs1-Shs1 interface is stabilized by the presence of phosphoinositides, allowing the visualization of micrometric long filaments formed by Shs1 protomers. In addition, molecular modeling experiments have revealed a potential molecular mechanism regarding the selectivity of septin subunits for phosphoinositide lipids.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Guanosina Trifosfato/metabolismo , Lípidos/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Microscopía por Crioelectrón , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Liposomas/química , Liposomas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mutación , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Tomografía/métodos
8.
J Am Chem Soc ; 142(29): 12811-12825, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32568532

RESUMEN

Materials science has been informed by nonclassical pathways to crystallization, based on biological processes, about the fabrication of damage-tolerant composite materials. Various biomineralizing taxa, such as stony corals, deposit metastable, magnesium-rich, amorphous calcium carbonate nanoparticles that further assemble and transform into higher-order mineral structures. Here, we examine a similar process in abiogenic conditions using synthetic, amorphous calcium magnesium carbonate nanoparticles. Applying a combination of high-resolution imaging and in situ solid-state nuclear magnetic resonance spectroscopy, we reveal the underlying mechanism of the solid-state phase transformation of these amorphous nanoparticles into crystals under aqueous conditions. These amorphous nanoparticles are covered by a hydration shell of bound water molecules. Fast chemical exchanges occur: the hydrogens present within the nanoparticles exchange with the hydrogens from the surface-bound H2O molecules which, in turn, exchange with the hydrogens of the free H2O molecule of the surrounding aqueous medium. This cascade of chemical exchanges is associated with an enhanced mobility of the ions/molecules that compose the nanoparticles which, in turn, allow for their rearrangement into crystalline domains via solid-state transformation. Concurrently, the starting amorphous nanoparticles aggregate and form ordered mineral structures through crystal growth by particle attachment. Sphere-like aggregates and spindle-shaped structures were, respectively, formed from relatively high or low weights per volume of the same starting amorphous nanoparticles. These results offer promising prospects for exerting control over such a nonclassical pathway to crystallization to design mineral structures that could not be achieved through classical ion-by-ion growth.

9.
Nature ; 516(7530): 250-3, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25219853

RESUMEN

Curli are functional amyloid fibres that constitute the major protein component of the extracellular matrix in pellicle biofilms formed by Bacteroidetes and Proteobacteria (predominantly of the α and γ classes). They provide a fitness advantage in pathogenic strains and induce a strong pro-inflammatory response during bacteraemia. Curli formation requires a dedicated protein secretion machinery comprising the outer membrane lipoprotein CsgG and two soluble accessory proteins, CsgE and CsgF. Here we report the X-ray structure of Escherichia coli CsgG in a non-lipidated, soluble form as well as in its native membrane-extracted conformation. CsgG forms an oligomeric transport complex composed of nine anticodon-binding-domain-like units that give rise to a 36-stranded ß-barrel that traverses the bilayer and is connected to a cage-like vestibule in the periplasm. The transmembrane and periplasmic domains are separated by a 0.9-nm channel constriction composed of three stacked concentric phenylalanine, asparagine and tyrosine rings that may guide the extended polypeptide substrate through the secretion pore. The specificity factor CsgE forms a nonameric adaptor that binds and closes off the periplasmic face of the secretion channel, creating a 24,000 Å(3) pre-constriction chamber. Our structural, functional and electrophysiological analyses imply that CsgG is an ungated, non-selective protein secretion channel that is expected to employ a diffusion-based, entropy-driven transport mechanism.


Asunto(s)
Amiloide/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Lipoproteínas/química , Lipoproteínas/metabolismo , Biopelículas , Membrana Celular , Cristalografía por Rayos X , Difusión , Entropía , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Periplasma/metabolismo , Conformación Proteica , Transporte de Proteínas
10.
J Virol ; 92(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046441

RESUMEN

Conserved across the family Herpesviridae, glycoprotein B (gB) is responsible for driving fusion of the viral envelope with the host cell membrane for entry upon receptor binding and activation by the viral gH/gL complex. Although crystal structures of the gB ectodomains of several herpesviruses have been reported, the membrane fusion mechanism has remained elusive. Here, we report the X-ray structure of the pseudorabies virus (PrV) gB ectodomain, revealing a typical class III postfusion trimer that binds membranes via its fusion loops (FLs) in a cholesterol-dependent manner. Mutagenesis of FL residues allowed us to dissect those interacting with distinct subregions of the lipid bilayer and their roles in membrane interactions. We tested 15 gB variants for the ability to bind to liposomes and further investigated a subset of them in functional assays. We found that PrV gB FL residues Trp187, Tyr192, Phe275, and Tyr276, which were essential for liposome binding and for fusion in cellular and viral contexts, form a continuous hydrophobic patch at the gB trimer surface. Together with results reported for other alphaherpesvirus gBs, our data suggest a model in which Phe275 from the tip of FL2 protrudes deeper into the hydrocarbon core of the lipid bilayer, while the side chains of Trp187, Tyr192, and Tyr276 form a rim that inserts into the more superficial interfacial region of the membrane to catalyze the fusion process. Comparative analysis with gBs from beta- and gamma-herpesviruses suggests that this membrane interaction model is valid for gBs from all herpesviruses.IMPORTANCE Herpesviruses are common human and animal pathogens that infect cells by entering via fusion of viral and cellular membranes. Central to the membrane fusion event is glycoprotein B (gB), which is the most conserved envelope protein across the herpesvirus family. Like other viral fusion proteins, gB anchors itself in the target membrane via two polypeptide segments called fusion loops (FLs). The molecular details of how gB FLs insert into the lipid bilayer have not been described. Here, we provide structural and functional data regarding key FL residues of gB from pseudorabies virus, a porcine herpesvirus of veterinary concern, which allows us to propose, for the first time, a molecular model to understand how the initial interactions by gBs from all herpesviruses with target membranes are established.


Asunto(s)
Herpesvirus Suido 1/fisiología , Liposomas/metabolismo , Mutación , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Herpesvirus Suido 1/química , Herpesvirus Suido 1/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteínas del Envoltorio Viral/genética , Internalización del Virus
11.
J Virol ; 91(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28424284

RESUMEN

Encapsidation of genetic material into polyhedral particles is one of the most common structural solutions employed by viruses infecting hosts in all three domains of life. Here, we describe a new virus of hyperthermophilic archaea, Sulfolobus polyhedral virus 1 (SPV1), which condenses its circular double-stranded DNA genome in a manner not previously observed for other known viruses. The genome complexed with virion proteins is wound up sinusoidally into a spherical coil which is surrounded by an envelope and further encased by an outer polyhedral capsid apparently composed of the 20-kDa virion protein. Lipids selectively acquired from the pool of host lipids are integral constituents of the virion. None of the major virion proteins of SPV1 show similarity to structural proteins of known viruses. However, minor structural proteins, which are predicted to mediate host recognition, are shared with other hyperthermophilic archaeal viruses infecting members of the order Sulfolobales The SPV1 genome consists of 20,222 bp and contains 45 open reading frames, only one-fifth of which could be functionally annotated.IMPORTANCE Viruses infecting hyperthermophilic archaea display a remarkable morphological diversity, often presenting architectural solutions not employed by known viruses of bacteria and eukaryotes. Here we present the isolation and characterization of Sulfolobus polyhedral virus 1, which condenses its genome into a unique spherical coil. Due to the original genomic and architectural features of SPV1, the virus should be considered a representative of a new viral family, "Portogloboviridae."


Asunto(s)
Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Sulfolobus/virología , Estructuras Virales , Virus ADN/genética , Virus ADN/ultraestructura , Orden Génico , Genoma Viral , Microscopía Electrónica , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Proteínas Virales/genética , Virión/química , Virión/ultraestructura
12.
PLoS Pathog ; 12(10): e1005813, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27783711

RESUMEN

Hantaviruses are zoonotic viruses transmitted to humans by persistently infected rodents, giving rise to serious outbreaks of hemorrhagic fever with renal syndrome (HFRS) or of hantavirus pulmonary syndrome (HPS), depending on the virus, which are associated with high case fatality rates. There is only limited knowledge about the organization of the viral particles and in particular, about the hantavirus membrane fusion glycoprotein Gc, the function of which is essential for virus entry. We describe here the X-ray structures of Gc from Hantaan virus, the type species hantavirus and responsible for HFRS, both in its neutral pH, monomeric pre-fusion conformation, and in its acidic pH, trimeric post-fusion form. The structures confirm the prediction that Gc is a class II fusion protein, containing the characteristic ß-sheet rich domains termed I, II and III as initially identified in the fusion proteins of arboviruses such as alpha- and flaviviruses. The structures also show a number of features of Gc that are distinct from arbovirus class II proteins. In particular, hantavirus Gc inserts residues from three different loops into the target membrane to drive fusion, as confirmed functionally by structure-guided mutagenesis on the HPS-inducing Andes virus, instead of having a single "fusion loop". We further show that the membrane interacting region of Gc becomes structured only at acidic pH via a set of polar and electrostatic interactions. Furthermore, the structure reveals that hantavirus Gc has an additional N-terminal "tail" that is crucial in stabilizing the post-fusion trimer, accompanying the swapping of domain III in the quaternary arrangement of the trimer as compared to the standard class II fusion proteins. The mechanistic understandings derived from these data are likely to provide a unique handle for devising treatments against these human pathogens.


Asunto(s)
Orthobunyavirus/química , Orthohantavirus/química , Proteínas del Envoltorio Viral/química , Animales , Cristalografía , Glicoproteínas/química , Humanos , Conformación Proteica , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie
13.
Nature ; 487(7405): 119-22, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-22722836

RESUMEN

S-layers are regular two-dimensional semipermeable protein layers that constitute a major cell-wall component in archaea and many bacteria. The nanoscale repeat structure of the S-layer lattices and their self-assembly from S-layer proteins (SLPs) have sparked interest in their use as patterning and display scaffolds for a range of nano-biotechnological applications. Despite their biological abundance and the technological interest in them, structural information about SLPs is limited to truncated and assembly-negative proteins. Here we report the X-ray structure of the SbsB SLP of Geobacillus stearothermophilus PV72/p2 by the use of nanobody-aided crystallization. SbsB consists of a seven-domain protein, formed by an amino-terminal cell-wall attachment domain and six consecutive immunoglobulin-like domains, that organize into a φ-shaped disk-like monomeric crystallization unit stabilized by interdomain Ca(2+) ion coordination. A Ca(2+)-dependent switch to the condensed SbsB quaternary structure pre-positions intermolecular contact zones and renders the protein competent for S-layer assembly. On the basis of crystal packing, chemical crosslinking data and cryo-electron microscopy projections, we present a model for the molecular organization of this SLP into a porous protein sheet inside the S-layer. The SbsB lattice represents a previously undescribed structural model for protein assemblies and may advance our understanding of SLP physiology and self-assembly, as well as the rational design of engineered higher-order structures for biotechnology.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Calcio/farmacología , Geobacillus stearothermophilus/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Calcio/química , Calcio/metabolismo , Microscopía por Crioelectrón , Cristalización/métodos , Cristalografía por Rayos X , Inmunoglobulinas/química , Modelos Moleculares , Simulación de Dinámica Molecular , Nanoestructuras/química , Polimerizacion/efectos de los fármacos , Estructura Cuaternaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Soluciones
14.
PLoS Genet ; 11(7): e1005338, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26162030

RESUMEN

Respiratory infectious diseases are the third cause of worldwide death. The nasopharynx is the portal of entry and the ecological niche of many microorganisms, of which some are pathogenic to humans, such as Neisseria meningitidis and Moraxella catarrhalis. These microbes possess several surface structures that interact with the actors of the innate immune system. In our attempt to understand the past evolution of these bacteria and their adaption to the nasopharynx, we first studied differences in cell wall structure, one of the strongest immune-modulators. We were able to show that a modification of peptidoglycan (PG) composition (increased proportion of pentapeptides) and a cell shape change from rod to cocci had been selected for along the past evolution of N. meningitidis. Using genomic comparison across species, we correlated the emergence of the new cell shape (cocci) with the deletion, from the genome of N. meningitidis ancestor, of only one gene: yacF. Moreover, the reconstruction of this genetic deletion in a bacterium harboring the ancestral version of the locus together with the analysis of the PG structure, suggest that this gene is coordinating the transition from cell elongation to cell division. Accompanying the loss of yacF, the elongation machinery was also lost by several of the descendants leading to the change in the PG structure observed in N. meningitidis. Finally, the same evolution was observed for the ancestor of M. catarrhalis. This suggests a strong selection of these genetic events during the colonization of the nasopharynx. This selection may have been forced by the requirement of evolving permissive interaction with the immune system, the need to reduce the cellular surface exposed to immune attacks without reducing the intracellular storage capacity, or the necessity to better compete for adhesion to target cells.


Asunto(s)
Adaptación Fisiológica/genética , Estructuras de la Membrana Celular/inmunología , Moraxella catarrhalis/genética , Neisseria meningitidis/genética , Mucosa Respiratoria/microbiología , Evolución Biológica , Proteínas de Ciclo Celular/genética , Humanos , Moraxella catarrhalis/inmunología , Moraxella catarrhalis/fisiología , Nasofaringe/microbiología , Neisseria meningitidis/inmunología , Neisseria meningitidis/fisiología , Peptidoglicano/química , Peptidoglicano/inmunología , Mucosa Respiratoria/inmunología
15.
PLoS Pathog ; 11(9): e1005162, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26367394

RESUMEN

The ability of pathogens to cause disease depends on their aptitude to escape the immune system. Type IV pili are extracellular filamentous virulence factors composed of pilin monomers and frequently expressed by bacterial pathogens. As such they are major targets for the host immune system. In the human pathogen Neisseria meningitidis, strains expressing class I pilins contain a genetic recombination system that promotes variation of the pilin sequence and is thought to aid immune escape. However, numerous hypervirulent clinical isolates express class II pilins that lack this property. This raises the question of how they evade immunity targeting type IV pili. As glycosylation is a possible source of antigenic variation it was investigated using top-down mass spectrometry to provide the highest molecular precision on the modified proteins. Unlike class I pilins that carry a single glycan, we found that class II pilins display up to 5 glycosylation sites per monomer on the pilus surface. Swapping of pilin class and genetic background shows that the pilin primary structure determines multisite glycosylation while the genetic background determines the nature of the glycans. Absence of glycosylation in class II pilins affects pilus biogenesis or enhances pilus-dependent aggregation in a strain specific fashion highlighting the extensive functional impact of multisite glycosylation. Finally, molecular modeling shows that glycans cover the surface of class II pilins and strongly decrease antibody access to the polypeptide chain. This strongly supports a model where strains expressing class II pilins evade the immune system by changing their sugar structure rather than pilin primary structure. Overall these results show that sequence invariable class II pilins are cloaked in glycans with extensive functional and immunological consequences.


Asunto(s)
Endotelio Vascular/microbiología , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Evasión Inmune , Modelos Moleculares , Neisseria meningitidis/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Adhesión Bacteriana , Línea Celular , Células Cultivadas , Secuencia Conservada , Endotelio Vascular/citología , Endotelio Vascular/inmunología , Endotelio Vascular/patología , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Fimbrias Bacterianas/inmunología , Fimbrias Bacterianas/ultraestructura , Eliminación de Gen , Glicosilación , Interacciones Huésped-Patógeno , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/microbiología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Infecciones Meningocócicas/inmunología , Infecciones Meningocócicas/metabolismo , Infecciones Meningocócicas/microbiología , Infecciones Meningocócicas/patología , Microscopía Electrónica de Transmisión , Neisseria meningitidis/inmunología , Neisseria meningitidis/ultraestructura , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Propiedades de Superficie
16.
Biochem J ; 473(14): 2239-48, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27208170

RESUMEN

Bacteria use diverse signalling pathways to adapt gene expression to external stimuli. In Gram-negative bacteria, the binding of scarce nutrients to membrane transporters triggers a signalling process that up-regulates the expression of genes of various functions, from uptake of nutrient to production of virulence factors. Although proteins involved in this process have been identified, signal transduction through this family of transporters is not well understood. In the present study, using an integrative approach (EM, SAXS, X-ray crystallography and NMR), we have studied the structure of the haem transporter HasR captured in two stages of the signalling process, i.e. before and after the arrival of signalling activators (haem and its carrier protein). We show for the first time that the HasR domain responsible for signal transfer: (i) is highly flexible in two stages of signalling; (ii) extends into the periplasm at approximately 70-90 Å (1 Å=0.1 nm) from the HasR ß-barrel; and (iii) exhibits local conformational changes in response to the arrival of signalling activators. These features would favour the signal transfer from HasR to its cytoplasmic membrane partners.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Cristalografía por Rayos X , Hemo/metabolismo , Espectroscopía de Resonancia Magnética , Microscopía Electrónica , Unión Proteica , Serratia marcescens/metabolismo , Transducción de Señal/fisiología
17.
PLoS Pathog ; 9(6): e1003473, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825953

RESUMEN

Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Streptococcus pneumoniae/metabolismo , Transformación Bacteriana/fisiología , ADN Bacteriano/genética , ADN Bacteriano/inmunología , Resistencia a Medicamentos/fisiología , Proteínas Fimbrias/genética , Proteínas Fimbrias/inmunología , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/inmunología , Humanos , Evasión Inmune/fisiología , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/inmunología , Streptococcus pneumoniae/patogenicidad
18.
Chemistry ; 21(52): 19265-77, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26592728

RESUMEN

The self-assembly behavior of the yeast-derived bolaamphiphile sophorolipid (SL) is generally studied under acidic/neutral pH conditions, at which micellar and fibrillar aggregates are commonly found, according to the (un)saturation of the aliphatic chain: the cis form, which corresponds to the oleic acid form of SL, spontaneously forms micelles, whereas the saturated form, which corresponds to the stearic acid form of SL, preferentially forms chiral fibers. By using small-angle light and X-ray scattering (SLS, SAXS) combined with high-sensitivity transmission electron microscopy imaging under cryogenic conditions (cryo-TEM), the nature of the self-assembled structures formed by these two compounds above pH 10, which is the pH at which they are negatively charged due to the presence of a carboxylate group, has been explored. Under these conditions, these compounds self-assemble into nanoscale platelets, despite the different molecular structures. This work shows that the electrostatic repulsion forces generated by COO(-) mainly drive the self-assembly process at basic pH, in contrast with that found at pH below neutrality, at which self-assembly is driven by van der Waals forces and hydrogen bonding, and thus, is in agreement with previous findings on carbohydrate-based gemini surfactants.


Asunto(s)
Plaquetas/química , Lípidos/química , Tensoactivos/química , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Micelas , Estructura Molecular , Nanoestructuras , Difracción de Rayos X
19.
Langmuir ; 31(41): 11186-94, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26375384

RESUMEN

The dynamics of the formation of siRNA-lipoplexes coated with hyaluronic acid (HA) and the parameters influencing their supramolecular organization were studied. The insertion of a HA-dioleylphosphatidylethanolamine (DOPE) conjugate in the liposome structure as well as subsequent complexation with siRNA increased the liposome size. Lipoplexes were around 110 nm at high ± charge ratios with a zeta potential around +50 mV and around 230 nm at low ± ratios, with a zeta potential that decreased to negative values, reaching -45 mV. The addition of the conjugate did not compromise siRNA binding to liposomes, although these nucleic acids induced a displacement of part of the HA-DOPE conjugate upon lipoplex formation, as confirmed by capillary electrophoresis. Isothermal titration calorimetry, X-ray diffraction studies, and cryo-TEM microscopy demonstrated that in addition to electrostatic interactions with siRNA a rearrangement of the lipid bilayers takes place, resulting in condensed oligolamellar vesicles. This phenomenon is dependent on the number of siRNA molecules and the degree of modification with HA. Finally, the suitable positioning of HA on the lipoplex surface and its ability to bind specifically to the CD44 receptors in a concentration-dependent manner was demonstrated by surface plasmon resonance analysis.


Asunto(s)
Sistemas de Liberación de Medicamentos , Receptores de Hialuranos/química , Ácido Hialurónico/química , Membrana Dobles de Lípidos/química , ARN Interferente Pequeño/química , Sitios de Unión , Humanos , Resonancia por Plasmón de Superficie
20.
Proc Natl Acad Sci U S A ; 109(33): 13386-91, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22826255

RESUMEN

Known viruses build their particles using a restricted number of redundant structural solutions. Here, we describe the Aeropyrum coil-shaped virus (ACV), of the hyperthermophilic archaeon Aeropyrum pernix, with a virion architecture not previously observed in the viral world. The nonenveloped, hollow, cylindrical virion is formed from a coiling fiber, which consists of two intertwining halves of a single circular nucleoprotein. The virus ACV is also exceptional for its genomic properties. It is the only virus with a single-stranded (ss) DNA genome among the known hyperthermophilic archaeal viruses. Moreover, the size of its circular genome, 24,893 nt, is double that of the largest known ssDNA genome, suggesting an efficient solution for keeping ssDNA intact at 90-95 °C, the optimal temperature range of A. pernix growth. The genome content of ACV is in line with its unique morphology and confirms that ACV is not closely related to any known virus.


Asunto(s)
Aeropyrum/virología , Virus de Archaea/genética , Virus ADN/genética , ADN de Cadena Simple/genética , Genoma Viral/genética , Virión/ultraestructura , Virus de Archaea/aislamiento & purificación , Virus de Archaea/ultraestructura , Secuencia de Bases , Virus ADN/aislamiento & purificación , Virus ADN/ultraestructura , ADN Circular/genética , Electroforesis en Gel de Agar , Modelos Biológicos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA