Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
New Phytol ; 234(1): 122-136, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34716593

RESUMEN

Shoot branching is regulated by multiple signals. Previous studies have indicated that sucrose may promote shoot branching through suppressing the inhibitory effect of the hormone strigolactone (SL). However, the molecular mechanisms underlying this effect are unknown. Here, we used molecular and genetic tools to identify the molecular targets underlying the antagonistic interaction between sucrose and SL. We showed that sucrose antagonizes the suppressive action of SL on tillering in rice and on the degradation of D53, a major target of SL signalling. Sucrose inhibits the gene expression of D3, the orthologue of the Arabidopsis F-box MAX2 required for SL signalling. Overexpression of D3 antagonizes sucrose inhibition of D53 degradation and enables the SL inhibition of tillering under high sucrose. Sucrose prevents SL-induced degradation of D14, the SL receptor involved in D53 degradation. In contrast to D3, D14 overexpression enhances D53 protein levels and sucrose-induced tillering, even in the presence of SL. Our results show that sucrose inhibits SL response by affecting key components of SL signalling and, together with previous studies reporting the inhibition of SL synthesis by nitrate and phosphate, demonstrate the central role played by SLs in the regulation of plant architecture by nutrients.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Lactonas/metabolismo , Lactonas/farmacología , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo , Sacarosa/farmacología
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806343

RESUMEN

Water deficit causes substantial yield losses that climate change is going to make even more problematic. Sustainable agricultural practices are increasingly developed to improve plant tolerance to abiotic stresses. One innovative solution amongst others is the integration of plant biostimulants in agriculture. In this work, we investigate for the first time the effects of the biostimulant -Leafamine®-a protein hydrolysate on greenhouse lettuce (Lactuca sativa L.) grown under well-watered and water-deficit conditions. We examined the physiological and metabolomic water deficit responses of lettuce treated with Leafamine® (0.585 g/pot) or not. Root application of Leafamine® increased the shoot fresh biomass of both well-watered (+40%) and deficit-irrigated (+20%) lettuce plants because the projected leaf area increased. Our results also indicate that Leafamine® application could adjust the nitrogen metabolism by enhancing the total nitrogen content, amino acid (proline) contents and the total protein level in lettuce leaves, irrespective of the water condition. Osmolytes such as soluble sugars and polyols, also increased in Leafamine®-treated lettuce. Our findings suggest that the protective effect of Leafamine is a widespread change in plant metabolism and could involve ABA, putrescine and raffinose.


Asunto(s)
Aminoácidos , Lactuca , Aminoácidos/metabolismo , Lactuca/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Agua/química
3.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36555768

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PDH) catalyzes a metabolic hub between glycolysis and the pentose phosphate pathway (PPP), which is the oxidation of glucose-6-phosphate (G6P) to 6-phosphogluconolactone concomitantly with the production of nicotinamide adenine dinucleotide phosphate (NADPH), a reducing power. It is considered to be the rate-limiting step that governs carbon flow through the oxidative pentose phosphate pathway (OPPP). The OPPP is the main supplier of reductant (NADPH) for several "reducing" biosynthetic reactions. Although it is involved in multiple physiological processes, current knowledge on its exact role and regulation is still piecemeal. The present review provides a concise and comprehensive picture of the diversity of plant G6PDHs and their role in seed germination, nitrogen assimilation, plant branching, and plant response to abiotic stress. This work will help define future research directions to improve our knowledge of G6PDHs in plant physiology and to integrate this hidden player in plant performance.


Asunto(s)
Glucosafosfato Deshidrogenasa , Plantas , Glucosafosfato Deshidrogenasa/metabolismo , NADP/metabolismo , Oxidación-Reducción , Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas , Vía de Pentosa Fosfato
4.
New Phytol ; 231(3): 1088-1104, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33909299

RESUMEN

Plant architecture is controlled by several endogenous signals including hormones and sugars. However, only little information is known about the nature and roles of the sugar signalling pathways in this process. Here we test whether the sugar signalling pathway mediated by HEXOKINASE1 (HXK1) is involved in the control of shoot branching. To test the involvement of HXK1 in shoot branching and in the hormonal network controlling this process, we modulated the HXK1 pathway using physiological and genetic approaches in rose, pea and arabidopsis. Mannose-induced HXK signalling triggered bud outgrowth in rose and pea. In arabidopsis, both HXK1 deficiency and defoliation led to decreased shoot branching and conferred hypersensitivity to auxin. Complementation of the HXK1 knockout mutant gin2 with a catalytically inactive HXK1, restored shoot branching to the wild-type level. HXK1-deficient plants displayed decreased cytokinin levels and increased expression of MAX2, which is required for strigolactone signalling. The branching phenotype of HXK1-deficient plants could be partly restored by cytokinin treatment and strigolactone deficiency could override the negative impact of HXK1 deficiency on shoot branching. Our observations demonstrate that HXK1 signalling contributes to the regulation of shoot branching and interacts with hormones to modulate plant architecture.


Asunto(s)
Citocininas , Ácidos Indolacéticos , Regulación de la Expresión Génica de las Plantas , Compuestos Heterocíclicos con 3 Anillos , Lactonas/farmacología , Reguladores del Crecimiento de las Plantas , Brotes de la Planta
5.
J Exp Bot ; 72(8): 3044-3060, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33543244

RESUMEN

Shoot branching is a pivotal process during plant growth and development, and is antagonistically orchestrated by auxin and sugars. In contrast to extensive investigations on hormonal regulatory networks, our current knowledge on the role of sugar signalling pathways in bud outgrowth is scarce. Based on a comprehensive stepwise strategy, we investigated the role of glycolysis/the tricarboxylic acid (TCA) cycle and the oxidative pentose phosphate pathway (OPPP) in the control of bud outgrowth. We demonstrated that these pathways are necessary for bud outgrowth promotion upon plant decapitation and in response to sugar availability. They are also targets of the antagonistic crosstalk between auxin and sugar availability. The two pathways act synergistically to down-regulate the expression of BRC1, a conserved inhibitor of shoot branching. Using Rosa calluses stably transformed with GFP-fused promoter sequences of RhBRC1 (pRhBRC1), glycolysis/TCA cycle and the OPPP were found to repress the transcriptional activity of pRhBRC1 cooperatively. Glycolysis/TCA cycle- and OPPP-dependent regulations involve the -1973/-1611 bp and -1206/-709 bp regions of pRhBRC1, respectively. Our findings indicate that glycolysis/TCA cycle and the OPPP are integrative parts of shoot branching control and can link endogenous factors to the developmental programme of bud outgrowth, likely through two distinct mechanisms.


Asunto(s)
Rosa , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Brotes de la Planta , Azúcares
6.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525430

RESUMEN

Plants adjust their growth and development through a sophisticated regulatory system integrating endogenous and exogenous cues. Many of them rely on intricate crosstalk between nutrients and hormones, an effective way of coupling nutritional and developmental information and ensuring plant survival. Sugars in their different forms such as sucrose, glucose, fructose and trehalose-6-P and the hormone family of cytokinins (CKs) are major regulators of the shoot and root functioning throughout the plant life cycle. While their individual roles have been extensively investigated, their combined effects have unexpectedly received little attention, resulting in many gaps in current knowledge. The present review provides an overview of the relationship between sugars and CKs signaling in the main developmental transition during the plant lifecycle, including seed development, germination, seedling establishment, root and shoot branching, leaf senescence, and flowering. These new insights highlight the diversity and the complexity of the crosstalk between sugars and CKs and raise several questions that will open onto further investigations of these regulation networks orchestrating plant growth and development.


Asunto(s)
Arabidopsis/metabolismo , Citocininas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Monosacáridos/metabolismo , Semillas/metabolismo , Transducción de Señal/genética , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Trehalosa/metabolismo
7.
New Phytol ; 225(2): 866-879, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529696

RESUMEN

Apical dominance occurs when the growing shoot tip inhibits the outgrowth of axillary buds. Apically-derived auxin in the nodal stem indirectly inhibits bud outgrowth via cytokinins and strigolactones. Recently, sugar deprivation was found to contribute to this phenomenon. Using rose and pea, we investigated whether sugar availability interacts with auxin in bud outgrowth control, and the role of cytokinins and strigolactones, in vitro and in planta. We show that sucrose antagonises auxin's effect on bud outgrowth, in a dose-dependent and coupled manner. Sucrose also suppresses strigolactone inhibition of outgrowth and the rms3 strigolactone-perception mutant is less affected by reducing sucrose supply. However, sucrose does not interfere with the regulation of cytokinin levels by auxin and stimulates outgrowth even with optimal cytokinin supply. These observations were assembled into a computational model in which sucrose represses bud response to strigolactones, largely independently of cytokinin levels. It quantitatively captures our observed dose-dependent sucrose-hormones effects on bud outgrowth and allows us to express outgrowth response to various combinations of auxin and sucrose levels as a simple quantitative law. This study places sugars in the bud outgrowth regulatory network and paves the way for a better understanding of branching plasticity in response to environmental and genotypic factors.


Asunto(s)
Flores/crecimiento & desarrollo , Flores/metabolismo , Ácidos Indolacéticos/farmacología , Lactonas/metabolismo , Pisum sativum/crecimiento & desarrollo , Rosa/crecimiento & desarrollo , Azúcares/metabolismo , Citocininas/metabolismo , Flores/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Pisum sativum/efectos de los fármacos , Rosa/efectos de los fármacos , Sacarosa/metabolismo
8.
Int J Mol Sci ; 20(15)2019 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-31382685

RESUMEN

The shoot branching pattern is a determining phenotypic trait throughout plant development. During shoot branching, BRANCHED1 (BRC1) plays a master regulator role in bud outgrowth, and its transcript levels are regulated by various exogenous and endogenous factors. RhBRC1 (the homologous gene of BRC1 in Rosa hybrida) is a main branching regulator whose posttranscriptional regulation in response to sugar was investigated through its 3'UTR. Transformed Rosa calluses containing a construction composed of the CaMV35S promoter, the green fluorescent protein (GFP) reporter gene, and the 3'UTR of RhBRC1 (P35S:GFP::3'UTRRhBRC1) were obtained and treated with various combinations of sugars and with sugar metabolism effectors. The results showed a major role of the 3'UTR of RhBRC1 in response to sugars, involving glycolysis/the tricarboxylic acid cycle (TCA) and the oxidative pentose phosphate pathway (OPPP). In Rosa vegetative buds, sequence analysis of the RhBRC1 3'UTR identified six binding motifs specific to the Pumilio/FBF RNA-binding protein family (PUF) and probably involved in posttranscriptional regulation. RhPUF4 was highly expressed in the buds of decapitated plants and in response to sugar availability in in-vitro-cultured buds. RhPUF4 was found to be close to AtPUM2, which encodes an Arabidopsis PUF protein. In addition, sugar-dependent upregulation of RhPUF4 was also found in Rosa calluses. RhPUF4 expression was especially dependent on the OPPP, supporting its role in OPPP-dependent posttranscriptional regulation of RhBRC1. These findings indicate that the 3'UTR sequence could be an important target in the molecular regulatory network of RhBRC1 and pave the way for investigating new aspects of RhBRC1 regulation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ARN/genética , Rosa/genética , Factores de Transcripción/genética , Regiones no Traducidas 3'/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Fenotipo , Proteínas de Plantas/genética , Rosa/metabolismo , Transducción de Señal/genética , Azúcares/metabolismo
9.
Int J Mol Sci ; 19(2)2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29385744

RESUMEN

Post-transcriptional regulation of gene expression plays a crucial role in many processes. In cells, it is mediated by diverse RNA-binding proteins. These proteins can influence mRNA stability, translation, and localization. The PUF protein family (Pumilio and FBF) is composed of RNA-binding proteins highly conserved among most eukaryotic organisms. Previous investigations indicated that they could be involved in many processes by binding corresponding motifs in the 3'UTR or by interacting with other proteins. To date, most of the investigations on PUF proteins have been focused on Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae, while only a few have been conducted on Arabidopsis thaliana. The present article provides an overview of the PUF protein family. It addresses their RNA-binding motifs, biological functions, and post-transcriptional control mechanisms in Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae, and Arabidopsis thaliana. These items of knowledge open onto new investigations into the relevance of PUF proteins in specific plant developmental processes.


Asunto(s)
Familia de Multigenes , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Secuencias de Aminoácidos , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Int J Mol Sci ; 19(9)2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30149541

RESUMEN

Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.


Asunto(s)
Redes y Vías Metabólicas , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Azúcares/metabolismo , Transporte Biológico , Metabolismo Energético , Regulación de la Expresión Génica , Proteínas de Transporte de Monosacáridos/metabolismo
11.
J Exp Bot ; 66(9): 2569-82, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25873679

RESUMEN

Sugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud outgrowth is already well established. To get a better understanding of sugar control, the present study investigated how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, for which mutants are available, were used when necessary. Buds were grown in vitro to manipulate available sugars. The temporal patterns of the hormonal regulatory network were assessed in parallel with bud outgrowth dynamics. Sucrose determined bud entrance into sustained growth in a concentration-dependent manner. Sustained growth was accompanied by sustained auxin production in buds, and sustained auxin export in a DR5::GUS-expressing pea line. Several events occurred ahead of sucrose-stimulated bud outgrowth. Sucrose upregulated early auxin synthesis genes (RhTAR1, RhYUC1) and the auxin efflux carrier gene RhPIN1, and promoted PIN1 abundance at the plasma membrane in a pPIN1::PIN1-GFP-expressing tomato line. Sucrose downregulated both RwMAX2, involved in the strigolactone-transduction pathway, and RhBRC1, a repressor of branching, at an early stage. The presence of sucrose also increased stem cytokinin content, but sucrose-promoted bud outgrowth was not related to that pathway. In these processes, several non-metabolizable sucrose analogues induced sustained bud outgrowth in R. hybrida, Pisum sativum, and Arabidopsis thaliana, suggesting that sucrose was involved in a signalling pathway. In conclusion, we identified potential hormonal candidates for bud outgrowth control by sugar. They are central to future investigations aimed at disentangling the processes that underlie regulation of bud outgrowth by sugar.


Asunto(s)
Reguladores del Crecimiento de las Plantas/metabolismo , Rosa/crecimiento & desarrollo , Sacarosa/metabolismo , Transporte Biológico , Citocininas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosa/genética , Rosa/metabolismo , Transducción de Señal
12.
Front Plant Sci ; 13: 929029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937351

RESUMEN

Plant architecture determines yield (fruit or flowers) and product quality in many horticultural species. It results from growth and branching processes and is dependent on genetic and environmental factors such as light quality. Highly significant genotype and light quality effects and their interaction have been demonstrated on the architecture of rose. Far-red (FR) light is known for its favourable effect on plant growth and development. We evaluated the effect of FR on rose growth and development and its interaction with the genotype through architectural, eco-physiological (net photosynthesis rate) and biochemical (sugar and hormone concentrations) approaches. Two cultivars ('The Fairy' - TF - and Knock Out® Radrazz - KO) with contrasting architectures were grown in a climate chamber under FR or in the absence of FR at an average photosynthetic photon flux density (400-700 nm) of 181.7 ± 12.8 µmol m-2 s-1 for 16 h. A significant effect of FR on the architecture of TF was demonstrated, marked by greater stem elongation, shoot branching and flowering, while KO remained insensitive to FR, supporting a genotype x FR interaction. The response of TF to FR was associated with improved photosynthetic capabilities, while KO exhibited an elevated level of abscisic acid (ABA) in its leaves. FR-dependent ABA accumulation might inhibit photosynthesis and prevent the increased plant carbon status required for growth. From a practical perspective, these findings argue in favour of a better reasoning of the choice of the cultivars grown in lighted production systems. Further investigations will be necessary to better understand these genotype-specific responses to FR and to unravel their molecular determinants.

13.
Front Plant Sci ; 13: 830840, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392520

RESUMEN

Shoot branching is crucial for successful plant development and plant response to environmental factors. Extensive investigations have revealed the involvement of an intricate regulatory network including hormones and sugars. Recent studies have demonstrated that two major systemic regulators-auxin and sugar-antagonistically regulate plant branching. However, little is known regarding the molecular mechanisms involved in this crosstalk. We carried out two complementary untargeted approaches-RNA-seq and metabolomics-on explant stem buds fed with different concentrations of auxin and sucrose resulting in dormant and non-dormant buds. Buds responded to the combined effect of auxin and sugar by massive reprogramming of the transcriptome and metabolome. The antagonistic effect of sucrose and auxin targeted several important physiological processes, including sink strength, the amino acid metabolism, the sulfate metabolism, ribosome biogenesis, the nucleic acid metabolism, and phytohormone signaling. Further experiments revealed a role of the TOR-kinase signaling pathway in bud outgrowth through at least downregulation of Rosa hybrida BRANCHED1 (RhBRC1). These new findings represent a cornerstone to further investigate the diverse molecular mechanisms that drive the integration of endogenous factors during shoot branching.

14.
Front Plant Sci ; 11: 578096, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33224165

RESUMEN

Plants are autotrophic organisms that self-produce sugars through photosynthesis. These sugars serve as an energy source, carbon skeletons, and signaling entities throughout plants' life. Post-transcriptional regulation of gene expression plays an important role in various sugar-related processes. In cells, it is regulated by many factors, such as RNA-binding proteins (RBPs), microRNAs, the spliceosome, etc. To date, most of the investigations into sugar-related gene expression have been focused on the transcriptional level in plants, while only a few studies have been conducted on post-transcriptional mechanisms. The present review provides an overview of the relationships between sugar and post-transcriptional regulation in plants. It addresses the relationships between sugar signaling and RBPs, microRNAs, and mRNA stability. These new items insights will help to reach a comprehensive understanding of the diversity of sugar signaling regulatory networks, and open onto new investigations into the relevance of these regulations for plant growth and development.

15.
Front Plant Sci ; 10: 76, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809235

RESUMEN

Shoot branching is a key process for plant growth and fitness. Newly produced axes result from axillary bud outgrowth, which is at least partly mediated through the regulation of BRANCHED1 gene expression (BRC1/TB1/FC1). BRC1 encodes a pivotal bud-outgrowth-inhibiting transcription factor belonging to the TCP family. As the regulation of BRC1 expression is a hub for many shoot-branching-related mechanisms, it is influenced by endogenous (phytohormones and nutrients) and exogenous (light) inputs, which involve so-far only partly identified molecular networks. This review highlights the central role of BRC1 in shoot branching and its responsiveness to different stimuli, and emphasizes the different knowledge gaps that should be addressed in the near future.

16.
Nutrients ; 10(3)2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29495578

RESUMEN

Inflammation and oxidative stress play major roles in endothelial dysfunction, and are key factors in the progression of cardiovascular diseases. The aim of this study was to evaluate in vitro the effect of three subfractions (SFs) from the Cucumis sativus aqueous fraction to reduce inflammatory factors and oxidative stress induced by angiotensin II (Ang II) in human microvascular endothelial cells-1 (HMEC-1) cells. The cells were cultured with different concentrations of Ang II and 0.08 or 10 µg/mL of SF1, SF2, or SF3, or 10 µmol of losartan as a control. IL-6 (Interleukin 6) concentration was quantified. To identify the most effective SF combinations, HMEC-1 cells were cultured as described above in the presence of four combinations of SF1 and SF3. Then, the effects of the most effective combination on the expression of adhesion molecules, the production of reactive oxygen species (ROS), and the bioavailability of nitric oxide (NO) were evaluated. Finally, a mass spectrometry analysis was performed. Both SF1 and SF3 subfractions decreased the induction of IL-6 by Ang II, and C4 (SF1 and SF3, 10 µg/mL each) was the most effective combination to inhibit the production of IL-6. Additionally, C4 prevented the expression of adhesion molecules, reduced the production of ROS, and increased the bioavailability of NO. Glycine, arginine, asparagine, lysine, and aspartic acid were the main components of both subfractions. These results demonstrate that C4 has anti-inflammatory and antioxidant effects.


Asunto(s)
Aminoácidos/farmacología , Angiotensina II/toxicidad , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Cucumis sativus , Células Endoteliales/efectos de los fármacos , Inflamación/prevención & control , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Aminoácidos/aislamiento & purificación , Antiinflamatorios/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Cucumis sativus/química , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Óxido Nítrico/metabolismo , Fitoterapia , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales , Especies Reactivas de Oxígeno/metabolismo
17.
Front Plant Sci ; 8: 1724, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29067031

RESUMEN

Bud outgrowth is a key process in the elaboration of yield and visual quality in rose crops. Although light intensity is well known to affect bud outgrowth, little is known on the mechanisms involved in this regulation. The objective of this work was to test if the control of bud outgrowth pattern along the stem by photosynthetic photon flux density (PPFD) is mediated by sugars, cytokinins and/or abscisic acid in intact rose plants. Rooted cuttings of Rosa hybrida 'Radrazz' were grown in growth chambers under high PPFD (530 µmol m-2 s-1) until the floral bud visible stage. Plants were then either placed under low PPFD (90 µmol m-2 s-1) or maintained under high PPFD. Bud outgrowth inhibition by low PPFD was associated with lower cytokinin and sugar contents and a higher abscisic acid content in the stem. Interestingly, cytokinin supply to the stem restored bud outgrowth under low PPFD. On the other hand, abscisic acid supply inhibited outgrowth under high PPFD and antagonized bud outgrowth stimulation by cytokinins under low PPFD. In contrast, application of sugars did not restore bud outgrowth under low PPFD. These results suggest that PPFD regulation of bud outgrowth in rose involves a signaling pathway in which cytokinins and abscisic acid play antagonistic roles. Sugars can act as nutritional and signaling compounds and may be involved too, but do not appear as the main regulator of the response to PPFD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA