Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Electrophoresis ; 45(1-2): 69-100, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37259641

RESUMEN

Proteins are important molecules involved in an immensely large number of biological processes. Being capable of manipulating proteins is critical for developing reliable and affordable techniques to analyze and/or detect them. Such techniques would enable the production of therapeutic agents for the treatment of diseases or other biotechnological applications (e.g., bioreactors or biocatalysis). Microfluidic technology represents a potential solution to protein manipulation challenges because of the diverse phenomena that can be exploited to achieve micro- and nanoparticle manipulation. In this review, we discuss recent contributions made in the field of protein manipulation in microfluidic systems using different physicochemical principles and techniques, some of which are miniaturized versions of already established macro-scale techniques.


Asunto(s)
Técnicas Analíticas Microfluídicas , Nanopartículas , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/métodos , Nanopartículas/química , Dispositivos Laboratorio en un Chip
2.
Analyst ; 149(8): 2469-2479, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38516870

RESUMEN

There is a growing interest in the advancement of microscale electrokinetic (EK) systems for biomedical and clinical applications, as these systems offer attractive characteristics such as portability, robustness, low sample requirements and short response time. The present work is focused on manipulating the characteristics of the insulating post arrangement in insulator-based EK (iEK) systems for separating a binary mixture of spherical microparticles with same diameter (5.1 µm), same shape, made from the same substrate material and only differing in their zeta potential by ∼14 mV. This study presents a combination of mathematical modeling and experimental separations performed by applying a low-frequency alternating current (AC) voltage in iEK systems with 12 distinct post arrangements. These iEK devices were used to systematically study the effect of three spatial characteristics of the insulating post array on particle separations: the horizontal separation and the vertical separation between posts, and introducing an offset to the posts arrangement. Through normalization of the spatial separation between the insulating posts with respect to particle diameter, guidelines to improve separation resolution for different particle mixtures possessing similar characteristics were successfully identified. The results indicated that by carefully designing the spatial arrangement of the post array, separation resolution values in the range of 1.4-2.8 can be obtained, illustrating the importance and effect of the arrangement of insulating posts on improving particle separations. This study demonstrates that iEK devices, with effectively designed spatial arrangement of the insulating post arrays, have the capabilities to perform discriminatory separations of microparticles of similar characteristics.

3.
Analyst ; 149(14): 3839-3849, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38855835

RESUMEN

Insulator-based electrokinetically driven microfluidic devices stimulated with direct current (DC) voltages are an attractive solution for particle separation, concentration, or isolation. However, to design successful particle manipulation protocols, it is mandatory to know the mobilities of electroosmosis, and linear and nonlinear electrophoresis of the microchannel/liquid/particle system. Several techniques exist to characterize the mobilities of electroosmosis and linear electrophoresis. However, only one method to characterize the mobility of nonlinear electrophoresis has been thoroughly assessed, which generally requires DC voltages larger than 1000 V and measuring particle velocity in a straight microchannel. Under such conditions, Joule heating, electrolysis, and the DC power source cost become a concern. Also, measuring particle velocity at high voltages is noisy, limiting characterization quality. Here we present a protocol-tested on 2 µm polystyrene particles-for characterizing the mobility of nonlinear electrophoresis of the liquid/particle system using a DC voltage of only 30 V and visual inspection of particle dynamics in a microchannel featuring insulating obstacles. Multiphysics numerical modelling was used to guide microchannel design and to correlate particle location during an experiment with electric field intensity. The method was validated against the conventional characterization protocol, exhibiting excellent agreement while significantly reducing measurement noise and experimental complexity.

4.
Anal Chem ; 95(26): 9914-9923, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37342914

RESUMEN

There is an immediate need for the development of rapid and reliable methods for microparticle and cell assessments, and electrokinetic (EK) phenomena can be exploited to meet that need in a low cost and label-free fashion. The present study combines modeling and experimentation to separate a binary mixture of microparticles of the same size (5.1 µm), shape (spherical), and substrate material (polystyrene), but with a difference in particle zeta potentials of only ∼14 mV, by applying direct current (DC)-biased low-frequency alternating current (AC) voltages in an insulator-based-EK (iEK) system. Four distinct separations were carried out to systematically study the effect of fine-tuning each of the three main characteristics of the applied voltage: frequency, amplitude, and DC bias. The results indicate that fine-tuning each parameter improved the separation from an initial separation resolution Rs = 0.5 to a final resolution Rs = 3.1 of the fully fine-tuned separation. The separation method exhibited fair reproducibility in retention time with variations ranging from 6 to 26% between experimental repetitions. The present study demonstrates the potential to extend the limits of iEK systems coupled with carefully fine-tuned DC-biased low-frequency AC voltages to perform discriminatory micron-sized particle separations.

5.
Electrophoresis ; 44(1-2): 268-297, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36205631

RESUMEN

Temperature is a critical-yet sometimes overlooked-parameter in microfluidics. Microfluidic devices can experience heating inside their channels during operation due to underlying physicochemical phenomena occurring therein. Such heating, whether required or not, must be monitored to ensure adequate device operation. Therefore, different techniques have been developed to measure and control temperature in microfluidic devices. In this contribution, the operating principles and applications of these techniques are reviewed. Temperature-monitoring instruments revised herein include thermocouples, thermistors, and custom-built temperature sensors. Of these, thermocouples exhibit the widest operating range; thermistors feature the highest accuracy; and custom-built temperature sensors demonstrate the best transduction. On the other hand, temperature control methods can be classified as external- or integrated-methods. Within the external methods, microheaters are shown to be the most adequate when working with biological samples, whereas Peltier elements are most useful in applications that require the development of temperature gradients. In contrast, integrated methods are based on chemical and physical properties, structural arrangements, which are characterized by their low fabrication cost and a wide range of applications. The potential integration of these platforms with the Internet of Things technology is discussed as a potential new trend in the field.


Asunto(s)
Técnicas Analíticas Microfluídicas , Temperatura , Microfluídica/métodos , Dispositivos Laboratorio en un Chip
6.
Electrophoresis ; 43(1-2): 327-339, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34717000

RESUMEN

Exosomes are small extracellular vesicles that can be obtained from several body fluids such as blood and urine. Since these vesicles can carry biomarkers and other cargo, they have application in healthcare diagnostics and therapeutics, such as liquid biopsies and drug delivery. Yet, their identification and separation from a sample remain challenging due to their high degree of heterogeneity and their co-existence with other bioparticles. In this contribution, we review the state-of-the-art on electrical techniques and methods to displace, selectively trap/isolate, and detect/characterize exosomes in microfluidic devices. Although there are many reviews focused on exosome separation using benchtop equipment, such as ultracentrifugation, there are limited reviews focusing on the use of electrical phenomena in microfluidic devices for exosome manipulation and detection. Here, we highlight contributions published during the past decade and present perspectives for this research field for the near future, outlining challenges to address in years to come.


Asunto(s)
Exosomas , Vesículas Extracelulares , Dispositivos Laboratorio en un Chip , Biopsia Líquida , Microfluídica , Ultracentrifugación
7.
Electrophoresis ; 43(1-2): 249-262, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34632600

RESUMEN

The survival of living beings, including humanity, depends on a continuous supply of clean water. However, due to the development of industry, agriculture, and population growth, an increasing number of wastewaters is discarded, and the negative effects of such actions are clear. The first step in solving this situation is the collection and monitoring of pollutants in water bodies to subsequently facilitate their treatment. Nonetheless, traditional sensing techniques are typically laboratory-based, leading to potential diminishment in analysis quality. In this paper, the most recent developments in micro- and nano-electrochemical devices for pollutant detection in wastewater are reviewed. The devices reviewed are based on a variety of electrodes and the sensing of three different categories of pollutants: nutrients and phenolic compounds, heavy metals, and organic matter. From these electrodes, Cu, Co, and Bi showed promise as versatile materials to detect a grand variety of contaminants. Also, the most commonly used material is glassy carbon, present in the detection of all reviewed analytes.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Nanoestructuras , Técnicas Electroquímicas , Electrodos , Contaminantes Ambientales/análisis , Metales Pesados/análisis , Nanoestructuras/química , Agua
8.
Electrophoresis ; 42(23): 2445-2464, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34081787

RESUMEN

Electrokinetically driven insulator-based microfluidic devices represent an attractive option to manipulate particle suspensions. These devices can filtrate, concentrate, separate, or characterize micro and nanoparticles of interest. Two decades ago, inspired by electrode-based dielectrophoresis, the concept of insulator-based dielectrophoresis (iDEP) was born. In these microfluidic devices, insulating structures (i.e., posts, membranes, obstacles, or constrictions) built within the channel are used to deform the spatial distribution of an externally generated electric field. As a result, particles suspended in solution experience dielectrophoresis (DEP). Since then, it has been assumed that DEP is responsible for particle trapping in these devices, regardless of the type of voltage being applied to generate the electric field-direct current (DC) or alternating current. Recent findings challenge this assumption by demonstrating particle trapping and even particle flow reversal in devices that prevent DEP from occurring (i.e., unobstructed long straight channels stimulated with a DC voltage and featuring a uniform electric field). The theory introduced to explain those unexpected observations was then applied to conventional "DC-iDEP" devices, demonstrating better prediction accuracy than that achieved with the conventional DEP-centered theory. This contribution summarizes contributions made during the last two decades, comparing both theories to explain particle trapping and highlighting challenges to address in the near future.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Electroforesis , Dispositivos Laboratorio en un Chip
9.
Electrophoresis ; 42(5): 565-587, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33166414

RESUMEN

Dielectrophoretically driven microfluidic devices have demonstrated great applicability in biomedical engineering, diagnostic medicine, and biological research. One of the potential fields of application for this technology is in point-of-care (POC) devices, ideally allowing for portable, fully integrated, easy to use, low-cost diagnostic platforms. Two main approaches exist to induce dielectrophoresis (DEP) on suspended particles, that is, electrode-based DEP and insulator-based DEP, each featuring different advantages and disadvantages. However, a shared concern lies in the input voltage used to generate the electric field necessary for DEP to take place. Therefore, input voltage can determine portability of a microfluidic device. This review outlines the recent advances in reducing stimulation voltage requirements in DEP-driven microfluidics.


Asunto(s)
Electroforesis/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Electricidad , Diseño de Equipo , Dispositivos Laboratorio en un Chip
10.
Electrophoresis ; 42(5): 605-625, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33188536

RESUMEN

Cancer is one of the leading causes of annual deaths worldwide, accounting for nearly 10 million deaths each year. Metastasis, the process by which cancer spreads across the patient's body, is the main cause of death in cancer patients. Because the rising trend observed in statistics of new cancer cases and cancer-related deaths does not allow for an optimistic viewpoint on the future-in relation to this terrible disease-the scientific community has sought methods to enable early detection of cancer and prevent the apparition of metastatic tumors. One such method is known as liquid biopsy, wherein a sample is taken from a bodily fluid and analyzed for the presence of CTCs or other cancer biomarkers (e.g., growth factors). With this objective, interest is growing by year in electrokinetically-driven microfluidics applied for the concentration, capture, filtration, transportation, and characterization of CTCs. Electrokinetic techniques-electrophoresis, dielectrophoresis, electrorotation, and electrothermal and EOF-have great potential for miniaturization and integration with electronic instrumentation for the development of point-of-care devices, which can become a tool for early cancer diagnostics and for the design of personalized therapeutics. In this contribution, we review the state of the art of electrokinetically-driven microfluidics for cancer cells manipulation.


Asunto(s)
Biomarcadores de Tumor , Electroforesis , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Células Tumorales Cultivadas , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Humanos , Dispositivos Laboratorio en un Chip , Neoplasias/diagnóstico , Neoplasias/patología , Neoplasias/terapia , Células Neoplásicas Circulantes/química , Células Neoplásicas Circulantes/metabolismo , Células Tumorales Cultivadas/química , Células Tumorales Cultivadas/citología , Células Tumorales Cultivadas/metabolismo
11.
Anal Chem ; 92(22): 14885-14891, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33108182

RESUMEN

Direct-current insulator-based electrokinetics (DC-iEK) is a branch of microfluidics that has demonstrated to be an attractive and efficient technique for manipulating micro- and nano- particles, including microorganisms. A unique feature of DC-iEK devices is that nonlinear EK effects are enhanced by the presence of regions of higher field intensity between the insulating structures. Accurate computational models, describing particle and cell behavior, are crucial to optimize the design and improve the performance of DC-iEK devices. The electrokinetic equilibrium condition (EEEC) is a recently introduced fundamental concept that has radically shifted the perspective behind the analysis of particle manipulation in these microfluidic devices. The EEEC takes into consideration previously neglected nonlinear effects on particle migration and indicates that these effects are central to control particle motion in DC-iEK devices. In this study, we present a simultaneous experimental characterization of linear and nonlinear electrokinetic (EK) parameters, that is, the electrophoretic mobility (µEP(1)), the particle zeta potential (ζP), the EEEC, and the electrophoretic mobility of the second kind (µEP(3)), for four types of polystyrene microparticles and four cell strains. For this, we studied the electromigration of polystyrene microparticles ranging in size from 2 to 6.8 µm, three bacteria strains (B. cereus, E. coli, and S. enterica) and a yeast cell (S. cerevisiae), ranging in size from 1 to 6.3 µm, in a polydimethylsiloxane (PDMS) microfluidic channel with a rectangular cross-section. The results illustrated that electrokinetic particle trapping can occur by linear and nonlinear electrophoresis and electroosmosis reaching an equilibrium, without the presence of insulating posts. The experimentally measured parameters reported herein will allow optimizing the design of future DC-iEK devices for a wide range of applications (e.g., to separate multiple kinds of particles and microorganisms) and for developing computational models that better represent reality.


Asunto(s)
Electroforesis/métodos , Microesferas , Bacterias/citología , Electroforesis/instrumentación , Dispositivos Laboratorio en un Chip , Modelos Lineales , Dinámicas no Lineales , Poliestirenos/química , Saccharomyces cerevisiae/citología , Factores de Tiempo
12.
Anal Chem ; 92(19): 12871-12879, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32894016

RESUMEN

The classic theory of direct-current (DC) insulator-based dielectrophoresis (iDEP) considers that, in order to elicit particle trapping, dielectrophoretic (DEP) velocity counterbalances electrokinetic (EK) motion, that is, electrophoresis (EP) and electro-osmotic flow (EOF). However, the particle velocity DEP component requires empirical correction factors (sometimes as high as 600) to account for experimental observations, suggesting the need for a refined model. Here, we show that, when applied to particle suspensions, a high-magnitude DC uniform electric field induces nonlinear particle velocities, leading to particle flow reversal beyond a critical field magnitude, referred to as the EK equilibrium condition. We further demonstrate that this particle motion can be described through an exploratory induced-charge EP nonlinear model. The model predictions were validated under an insulator-based microfluidic platform demonstrating predictive particle trapping for three different particle sizes (with an estimation error < 10%, not using correction factors). Our findings suggest that particle motion and trapping in "DC-iDEP" devices are dominated by EP and EOF, rather than by DEP effects.

13.
Anal Chem ; 91(23): 14975-14982, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31738514

RESUMEN

Exosomes are a specific subpopulation of extracellular vesicles that have gained interest because of their many potential biomedical applications. However, exosome isolation and characterization are the first steps toward designing novel applications. This work presents a direct current-insulator-based dielectrophoretic (DC-iDEP) approach to simultaneously capture and separate exosomes by size. To do so, a microdevice consisting of a channel with two electrically insulating post sections was designed. Each section was tailored to generate different nonuniform spatial distributions of the electric field and, therefore, different dielectrophoretic forces acting on exosomes suspended in solution. Side channels were placed adjacent to each section to allow sample recovery. By applying an electric potential difference of 2000 V across the length of the main channel, dielectrophoretic size-based separation of exosomes was observed in the device. Analysis of particle size in each recovered fraction served to assess exosome separation efficiency. These findings show that iDEP can represent a first step toward designing a high-throughput, fast, and robust microdevice capable of capturing and discriminating different subpopulations of exosomes based on their size.


Asunto(s)
Electroforesis/instrumentación , Exosomas , Técnicas Analíticas Microfluídicas/métodos , Electroforesis/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Tamaño de la Partícula
14.
Electrophoresis ; 40(23-24): 3036-3049, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31373715

RESUMEN

Exosomes are nanovesicles secreted by most cellular types that carry important biochemical compounds throughout the body with different purposes, playing a preponderant role in cellular communication. Because of their structure, physicochemical properties and stability, recent studies are focusing in their use as nanocarriers for different therapeutic compounds for the treatment of different diseases ranging from cancer to Parkinson's disease. However, current bioseparation protocols and methodologies are selected based on the final exosome application or intended use and present both advantages and disadvantages when compared among them. In this context, this review aims to present the most important technologies available for exosome isolation while discussing their advantages and disadvantages and the possibilities of being combined with other strategies. This is critical since the development of novel exosome-based therapeutic strategies will be constrained to the effectiveness and yield of the selected downstream purification methodologies for which a thorough understanding of the available technological resources is needed.


Asunto(s)
Biotecnología/métodos , Técnicas de Química Analítica/métodos , Exosomas , Células Cultivadas , Humanos , Técnicas Analíticas Microfluídicas/métodos
15.
Electrophoresis ; 40(10): 1408-1416, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30883810

RESUMEN

Insulator-based dielectrophoresis (iDEP) is the electrokinetic migration of polarized particles when subjected to a non-uniform electric field generated by the inclusion of insulating structures between two remote electrodes. Electrode spacing is considerable in iDEP systems when compared to electrode-based DEP systems, therefore, iDEP systems require high voltages to achieve efficient particle manipulation. A consequence of this is the temperature increase within the channel due to Joule heating effects, which, in some cases, can be detrimental when manipulating biological samples. This work presents an experimental and modeling study on the increase in temperature inside iDEP devices. For this, we studied seven distinct channel designs that mainly differ from each other in their post array characteristics: post shape, post size and spacing between posts. Experimental results obtained using a custom-built copper Resistance Temperature Detector, based on resistance changes, show that the influence of the insulators produces a difference in temperature rise of approximately 4°C between the designs studied. Furthermore, a 3D COMSOL model is also introduced to evaluate heat generation and dissipation, which is in good agreement with the experiments. The model allowed relating the difference in average temperature for the geometries under study to the electric resistance posed by the post array in each design.


Asunto(s)
Electroforesis/instrumentación , Electroforesis/métodos , Diseño de Equipo , Técnicas Analíticas Microfluídicas/instrumentación , Modelos Teóricos , Temperatura
16.
Anal Chem ; 90(7): 4310-4315, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29528220

RESUMEN

Insulator-based dielectrophoresis (iDEP) is a microfluidic technique used for particle analysis in a wide array of applications. Significant efforts are dedicated to improve iDEP systems by reducing voltage requirements. This study assesses how the performance of an iDEP system, in terms of particle trapping, depends on the number of insulating obstacles longitudinally present in the microchannel. In analogy with Kirchhoff's loop rule, iDEP systems were analyzed as a series combination of electrical resistances, where the equivalent resistance of the post array is composed by a number of individual resistors (columns of insulating posts). It was predicted by the COMSOL model, and later confirmed by experimental results, that reducing the number of columns of insulating posts significantly affects the electric field distribution, decreasing the required voltage to dielectrophoretically trap particles within the post array. As an application, it was demonstrated that decreasing the number of columns in the post array allows for the dielectrophoretic trapping of nanometer-scale particles at voltages well below those reported in previous similar iDEP systems. These findings illustrate how the iDEP channel configuration can be customized for specific applications.

17.
Electrophoresis ; 44(21-22): 1627-1628, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37946540
18.
Nanotechnology ; 29(23): 235704, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29528846

RESUMEN

Insulator-based dielectrophoresis (iDEP) is a simple, scalable mechanism that can be used for directly manipulating particle trajectories in pore-based filtration and separation processes. However, iDEP manipulation of nanoparticles presents unique challenges as the dielectrophoretic force [Formula: see text] exerted on the nanoparticles can easily be overshadowed by opposing kinetic forces. In this study, a molecularly thin, SiN-based nanoporous membrane (NPN) is explored as a breakthrough technology that enhances [Formula: see text] By numerically assessing the gradient of the electric field square [Formula: see text]-a common measure for [Formula: see text] magnitude-it was found that the unique geometrical features of NPN (pore tapering, sharp pore corner and ultrathin thickness) act in favor of intensifying the overall [Formula: see text] A comparative study indicated that [Formula: see text] generated in NPN are four orders of magnitude larger than track-etched polycarbonate membranes with comparable pore size. The stronger [Formula: see text] suggests that iDEP can be conducted under lower voltage bias with NPN: reducing joule heating concerns and enabling solutions to have higher ionic strength. Enabling higher ionic strength solutions may also extend the opportunities of iDEP applications under physiologically relevant conditions. This study also highlights the effects of [Formula: see text] induced by the ion accumulation along charged surfaces (electric-double layer (EDL)). EDL-based [Formula: see text] exists along the entire charged surface, including locations where geometry-based iDEP is negligible. The high surface-to-volume ratio of NPN offers a unique platform for exploiting such EDL-based DEP systems. The EDL-based [Formula: see text] was also found to offset the geometry-based [Formula: see text] but this effect was easily circumvented by reducing the EDL thickness (e.g. increasing the ionic strength from 0.1 to 100 mM). The results from this study imply the potential application of iDEP as a direct, in-operando antifouling mechanism for ultrafiltration technology, and also as an active tuning mechanism to control the cut-off size limit for continuous selectivity of nanomembrane-based separations.

19.
J Invertebr Pathol ; 119: 54-61, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24769124

RESUMEN

Prior knowledge of the local population structure of entomopathogenic fungi is considered an important requisite when developing microbial control strategies against major pests of crops such as white grubs. An extensive survey in the estate of Guanajuato, one of the main agricultural regions of Mexico, was carried out to determine the abundance and diversity of entomopathogenic fungi in soil. Soil collected from 11 locations was baited for entomopathogenic fungi using Galleria mellonella. In addition, all isolates were morphologically identified and selected isolates of Beauveria and Metarhizium isolates identified using Bloc and ITS or Elongation Factor 1-α and ITS sequence information respectively. Genotypic diversity was then studied using microsatellite genotyping. The proportion of isolates belonging to each genus varied amongst all locations. The species Beauveria bassiana, B. pseudobassiana and Metarhizium robertsii were found, with B. bassiana being the most abundant and widely distributed. Microsatellite genotyping showed that the 36 B. bassiana isolates were grouped in 29 unique haplotypes, but with no separation according to geographical origin.


Asunto(s)
Beauveria/genética , Metarhizium/genética , Microbiología del Suelo , Genotipo , México , Filogenia , Reacción en Cadena de la Polimerasa
20.
Biosensors (Basel) ; 14(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38785711

RESUMEN

Electrokinetic (EK) microsystems, which are capable of performing separations without the need for labeling analytes, are a rapidly growing area in microfluidics. The present work demonstrated three distinct binary microbial separations, computationally modeled and experimentally performed, in an insulator-based EK (iEK) system stimulated by DC-biased AC potentials. The separations had an increasing order of difficulty. First, a separation between cells of two distinct domains (Escherichia coli and Saccharomyces cerevisiae) was demonstrated. The second separation was for cells from the same domain but different species (Bacillus subtilis and Bacillus cereus). The last separation included cells from two closely related microbial strains of the same domain and the same species (two distinct S. cerevisiae strains). For each separation, a novel computational model, employing a continuous spatial and temporal function for predicting the particle velocity, was used to predict the retention time (tR,p) of each cell type, which aided the experimentation. All three cases resulted in separation resolution values Rs>1.5, indicating complete separation between the two cell species, with good reproducibility between the experimental repetitions (deviations < 6%) and good agreement (deviations < 18%) between the predicted tR,p and experimental (tR,e) retention time values. This study demonstrated the potential of DC-biased AC iEK systems for performing challenging microbial separations.


Asunto(s)
Saccharomyces cerevisiae , Escherichia coli , Dispositivos Laboratorio en un Chip , Bacillus cereus , Técnicas Analíticas Microfluídicas , Separación Celular/métodos , Bacillus subtilis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA