Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 321, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863004

RESUMEN

Huntington's disease (HD) is a neurological disorder caused by a CAG expansion in the Huntingtin gene (HTT). HD pathology mostly affects striatal medium-sized spiny neurons and results in an altered cortico-striatal function. Recent studies report that motor skill learning, and cortico-striatal stimulation attenuate the neuropathology in HD, resulting in an amelioration of some motor and cognitive functions. During physical training, extracellular vesicles (EVs) are released in many tissues, including the brain, as a potential means for inter-tissue communication. To investigate how motor skill learning, involving acute physical training, modulates EVs crosstalk between cells in the striatum, we trained wild-type (WT) and R6/1 mice, the latter with motor and cognitive deficits, on the accelerating rotarod test, and we isolated their striatal EVs. EVs from R6/1 mice presented alterations in the small exosome population when compared to WT. Proteomic analyses revealed that striatal R6/1 EVs recapitulated signaling and energy deficiencies present in HD. Motor skill learning in R6/1 mice restored the amount of EVs and their protein content in comparison to naïve R6/1 mice. Furthermore, motor skill learning modulated crucial pathways in metabolism and neurodegeneration. All these data provide new insights into the pathogenesis of HD and put striatal EVs in the spotlight to understand the signaling and metabolic alterations in neurodegenerative diseases. Moreover, our results suggest that motor learning is a crucial modulator of cell-to-cell communication in the striatum.


Asunto(s)
Cuerpo Estriado , Modelos Animales de Enfermedad , Vesículas Extracelulares , Enfermedad de Huntington , Aprendizaje , Destreza Motora , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/genética , Animales , Vesículas Extracelulares/metabolismo , Destreza Motora/fisiología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Aprendizaje/fisiología , Ratones , Masculino , Ratones Transgénicos , Ratones Endogámicos C57BL
2.
Ann Neurol ; 92(5): 888-894, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35929078

RESUMEN

The purpose of this study was to investigate whether  differential phosphorylation states of blood markers can identify patients with LRRK2 Parkinson's disease (PD). We assessed phospho(P)-Ser-935-LRRK2 and P-Ser-473-AKT levels in peripheral blood cells from patients with G2019S LRRK2-associated PD (L2PD, n = 31), G2019S LRRK2 non-manifesting carriers (L2NMC, n = 26), idiopathic PD (iPD, n = 25), and controls (n = 40, total n = 122). We found no differences at P-Ser-935-LRRK2 between groups but detected a specific increase of P-Ser-473-AKT levels in all G2019S carriers, either L2PD or L2NMC, absent in iPD. Although insensitive to LRRK2 inhibition, our study identifies P-Ser-473-AKT as an endogenous candidate biomarker for peripheral inflammation in G2019S carriers using accessible blood cells. ANN NEUROL 2022;92:888-894.


Asunto(s)
Enfermedad de Parkinson , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteínas Proto-Oncogénicas c-akt/genética , Mutación/genética , Enfermedad de Parkinson/genética , Biomarcadores , Células Sanguíneas
3.
Am J Pathol ; 191(3): 475-486, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33345999

RESUMEN

Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by cholesterol accumulation caused by loss-of-function mutations in the Npc1 gene. NPC disease primarily affects the brain, causing neuronal damage and affecting motor coordination. In addition, considerable liver malfunction in NPC disease is common. Recently, we found that the depletion of annexin A6 (ANXA6), which is most abundant in the liver and involved in cholesterol transport, ameliorated cholesterol accumulation in Npc1 mutant cells. To evaluate the potential contribution of ANXA6 in the progression of NPC disease, double-knockout mice (Npc1-/-/Anxa6-/-) were generated and examined for lifespan, neurologic and hepatic functions, as well as liver histology and ultrastructure. Interestingly, lack of ANXA6 in NPC1-deficient animals did not prevent the cerebellar degeneration phenotype, but further deteriorated their compromised hepatic functions and reduced their lifespan. Moreover, livers of Npc1-/-/Anxa6-/- mice contained a significantly elevated number of foam cells congesting the sinusoidal space, a feature commonly associated with inflammation. We hypothesize that ANXA6 deficiency in Npc1-/- mice not only does not reverse neurologic and motor dysfunction, but further worsens overall liver function, exacerbating hepatic failure in NPC disease.


Asunto(s)
Anexina A6/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Hepatopatías/patología , Longevidad , Animales , Conducta Animal , Hepatopatías/etiología , Hepatopatías/metabolismo , Ratones , Ratones Noqueados , Proteína Niemann-Pick C1
4.
Acta Neuropathol ; 141(4): 565-584, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33547932

RESUMEN

Progressive motor alterations and selective death of striatal medium spiny neurons (MSNs) are key pathological hallmarks of Huntington's disease (HD), a neurodegenerative condition caused by a CAG trinucleotide repeat expansion in the coding region of the huntingtin (HTT) gene. Most research has focused on the pathogenic effects of the resultant protein product(s); however, growing evidence indicates that expanded CAG repeats within mutant HTT mRNA and derived small CAG repeat RNAs (sCAG) participate in HD pathophysiology. The individual contribution of protein versus RNA toxicity to HD pathophysiology remains largely uncharacterized and the role of other classes of small RNAs (sRNA) that are strongly perturbed in HD is uncertain. Here, we demonstrate that sRNA produced in the putamen of HD patients (HD-sRNA-PT) are sufficient to induce HD pathology in vivo. Mice injected with HD-sRNA-PT show motor abnormalities, decreased levels of striatal HD-related proteins, disruption of the indirect pathway, and strong transcriptional abnormalities, paralleling human HD pathology. Importantly, we show that the specific blockage of sCAG mitigates HD-sRNA-PT neurotoxicity only to a limited extent. This observation prompted us to identify other sRNA species enriched in HD putamen with neurotoxic potential. We detected high levels of tRNA fragments (tRFs) in HD putamen, and we validated the neurotoxic potential of an Alanine derived tRF in vitro. These results highlight that HD-sRNA-PT are neurotoxic, and suggest that multiple sRNA species contribute to striatal dysfunction and general transcriptomic changes, favoring therapeutic strategies based on the blockage of sRNA-mediated toxicity.


Asunto(s)
Encéfalo/patología , Enfermedad de Huntington , ARN Pequeño no Traducido/farmacología , Animales , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Ratones , Expansión de Repetición de Trinucleótido
5.
Brain ; 142(10): 3158-3175, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31365052

RESUMEN

Huntington's disease is a neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the huntingtin gene. Striatal projection neurons are mainly affected, leading to motor symptoms, but molecular mechanisms involved in their vulnerability are not fully characterized. Here, we show that eIF4E binding protein (4E-BP), a protein that inhibits translation, is inactivated in Huntington's disease striatum by increased phosphorylation. Accordingly, we detected aberrant de novo protein synthesis. Proteomic characterization indicates that translation specifically affects sets of proteins as we observed upregulation of ribosomal and oxidative phosphorylation proteins and downregulation of proteins related to neuronal structure and function. Interestingly, treatment with the translation inhibitor 4EGI-1 prevented R6/1 mice motor deficits, although corticostriatal long-term depression was not markedly changed in behaving animals. At the molecular level, injection of 4EGI-1 normalized protein synthesis and ribosomal content in R6/1 mouse striatum. In conclusion, our results indicate that dysregulation of protein synthesis is involved in mutant huntingtin-induced striatal neuron dysfunction.


Asunto(s)
Factor 4E Eucariótico de Iniciación/fisiología , Enfermedad de Huntington/genética , Biosíntesis de Proteínas/fisiología , Animales , Conducta Animal , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Factor 4E Eucariótico de Iniciación/genética , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Interneuronas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neostriado/patología , Degeneración Nerviosa/patología , Neuronas/metabolismo , Proteínas Nucleares/genética , Fosforilación , Proteómica
6.
Mol Cell Neurosci ; 86: 41-49, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29122705

RESUMEN

Recent results indicate that STriatal-Enriched protein tyrosine Phosphatase (STEP) levels are regulated by brain-derived neurotrophic factor (BDNF), whose expression changes during postnatal development and aging. Here, we studied STEP ontogeny in mouse brain and changes in STEP with age with emphasis on the possible regulation by BDNF. We found that STEP expression increased during the first weeks of life, reaching adult levels by 2-3weeks of age in the striatum and cortex, and by postnatal day (P) 7 in the hippocampus. STEP protein levels were unaffected in BDNF+/- mice, but were significantly reduced in the striatum and cortex, but not in the hippocampus, of BDNF-/- mice at P7 and P14. In adult wild-type mice there were no changes in cortical and hippocampal STEP61 levels with age. Conversely, striatal STEP levels were reduced from 12months of age, correlating with higher ubiquitination and increased BDNF content and signaling. Lower STEP levels in older mice were paralleled by increased phosphorylation of its substrates. Since altered STEP levels are involved in cellular malfunctioning events, its reduction in the striatum with increasing age should encourage future studies of how this imbalance might participate in the aging process.


Asunto(s)
Envejecimiento/metabolismo , Factor Neurotrófico Derivado del Encéfalo/fisiología , Cuerpo Estriado/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/deficiencia , Cuerpo Estriado/crecimiento & desarrollo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
7.
Neurobiol Dis ; 120: 88-97, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30176350

RESUMEN

Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by an expansion of a CAG repeat in the huntingtin (htt) gene, which results in an aberrant form of the protein (mhtt). This leads to motor and cognitive deficits associated with corticostriatal and hippocampal alterations. The levels of STriatal-Enriched protein tyrosine Phosphatase (STEP), a neural-specific tyrosine phosphatase that opposes the development of synaptic strengthening, are decreased in the striatum of HD patients and also in R6/1 mice, thereby contributing to the resistance to excitotoxicity described in this HD mouse model. Here, we aimed to analyze whether STEP inactivation plays a role in the pathophysiology of HD by investigating its effect on motor and cognitive impairment in the R6/1 mouse model of HD. We found that genetic deletion of STEP delayed the onset of motor dysfunction and prevented the appearance of cognitive deficits in R6/1 mice. This phenotype was accompanied by an increase in pERK1/2 levels, a delay in the decrease of striatal DARPP-32 levels and a reduction in the size of mhtt aggregates, both in the striatum and CA1 hippocampal region. We also found that acute pharmacological inhibition of STEP with TC-2153 improved cognitive function in R6/1 mice. In conclusion, our results show that deletion of STEP has a beneficial effect on motor coordination and cognition in a mouse model of HD suggesting that STEP inhibition could be a good therapeutic strategy in HD patients.


Asunto(s)
Cognición/fisiología , Modelos Animales de Enfermedad , Enfermedad de Huntington/metabolismo , Destreza Motora/fisiología , Farmacogenética/métodos , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Animales , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Farmacogenética/tendencias , Proteínas Tirosina Fosfatasas no Receptoras/genética
8.
Hum Mol Genet ; 24(17): 5040-52, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26082469

RESUMEN

Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by brain atrophy particularly in striatum leading to personality changes, chorea and dementia. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase in the crossroad of many signaling pathways that is highly pleiotropic as it phosphorylates more than hundred substrates including structural, metabolic, and signaling proteins. Increased GSK-3 activity is believed to contribute to the pathogenesis of neurodegenerative diseases like Alzheimer's disease and GSK-3 inhibitors have been postulated as therapeutic agents for neurodegeneration. Regarding HD, GSK-3 inhibitors have shown beneficial effects in cell and invertebrate animal models but no evident efficacy in mouse models. Intriguingly, those studies were performed without interrogating GSK-3 level and activity in HD brain. Here we aim to explore the level and also the enzymatic activity of GSK-3 in the striatum and other less affected brain regions of HD patients and of the R6/1 mouse model to then elucidate the possible contribution of its alteration to HD pathogenesis by genetic manipulation in mice. We report a dramatic decrease in GSK-3 levels and activity in striatum and cortex of HD patients with similar results in the mouse model. Correction of the GSK-3 deficit in HD mice, by combining with transgenic mice with conditional GSK-3 expression, resulted in amelioration of their brain atrophy and behavioral motor and learning deficits. Thus, our results demonstrate that decreased brain GSK-3 contributes to HD neurological phenotype and open new therapeutic opportunities based on increasing GSK-3 activity or attenuating the harmful consequences of its decrease.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Enfermedad de Huntington/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Atrofia , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Cognición , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Expresión Génica , Glucógeno Sintasa Quinasa 3/genética , Humanos , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Actividad Motora/genética , Fenotipo
9.
Am J Pathol ; 186(3): 517-23, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26784526

RESUMEN

Niemann-Pick C disease is a neurovisceral disorder caused by mutations in the NPC gene that result in systemic accumulation of intracellular cholesterol. Although neurodegeneration defines the disease's severity, in most patients it is preceded by hepatic complications such as cholestatic jaundice or hepatomegaly. To analyze the contribution of the hepatic disease in Niemann-Pick C disease progression and to evaluate the degree of primary and secondary hepatic damage, we generated a transgenic mouse with liver-selective expression of NPC1 from embryonic stages. Hepatic NPC1 re-expression did not ameliorate the onset and progression of neurodegeneration of the NPC1-null animal. However, the mice showed reduced hepatomegalia and dramatic, although not complete, reduction of hepatic cholesterol and serum bile salts, bilirubin, and transaminase levels. Therefore, hepatic primary and secondary cholesterol deposition and damage occur simultaneously during Niemann-Pick C disease progression.


Asunto(s)
Colesterol/metabolismo , Modelos Animales de Enfermedad , Hepatopatías/complicaciones , Hígado/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Proteínas/genética , Animales , Ácidos y Sales Biliares/sangre , Bilirrubina/sangre , Colesterol/análisis , Progresión de la Enfermedad , Células Madre Embrionarias , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular , Hígado/patología , Hepatopatías/genética , Hepatopatías/metabolismo , Hepatopatías/patología , Masculino , Ratones , Ratones Noqueados , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/complicaciones , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/patología , Proteínas/metabolismo , Transaminasas/sangre
10.
Biochim Biophys Acta Gen Subj ; 1861(4): 922-935, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28130160

RESUMEN

BACKGROUND: Chelerythrine is widely used as a broad range protein kinase C (PKC) inhibitor, but there is controversy about its inhibitory effect. Moreover, it has been shown to exert PKC-independent effects on non-neuronal cells. METHODS: In this study we investigated possible off-target effects of chelerythrine on cultured cortical rodent neurons and a neuronal cell line. RESULTS: We found that 10µM chelerythrine, a commonly used concentration in neuronal cultures, reduces PKC and cAMP-dependent protein kinase substrates phosphorylation in mouse cultured cortical neurons, but not in rat primary cortical neurons or in a striatal cell line. Furthermore, we found that incubation with chelerythrine increases pERK1/2 levels in all models studied. Moreover, our results show that chelerythrine promotes calpain activation as assessed by the cleavage of spectrin, striatal-enriched protein tyrosine phosphatase and calcineurin A. Remarkably, chelerythrine induces a concentration-dependent increase in intracellular Ca2+ levels that mediates calpain activation. In addition, we found that chelerythrine induces ERK1/2- and calpain-independent caspase-3 activation that can be prevented by the Ca2+ chelator BAPTA-AM. CONCLUSIONS: This is the first report showing that chelerythrine promotes Ca2+-dependent calpain activation in neuronal cells, which has consequences for the interpretation of studies using this compound. GENERAL SIGNIFICANCE: Chelerythrine is still marketed as a specific PKC inhibitor and extensively used in signal transduction studies. We believe that the described off-target effects should preclude its use as a PKC inhibitor in future works.


Asunto(s)
Benzofenantridinas/farmacología , Calcio/metabolismo , Calpaína/metabolismo , Proteínas de la Membrana/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteína Quinasa C/metabolismo , Animales , Calcineurina/metabolismo , Caspasa 3/metabolismo , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Activación Enzimática/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Proteínas Tirosina Fosfatasas/metabolismo , Ratas , Ratas Sprague-Dawley
11.
Addict Biol ; 22(6): 1706-1718, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27457910

RESUMEN

Caffeine has cognitive-enhancing properties with effects on learning and memory, concentration, arousal and mood. These effects imply changes at circuital and synaptic level, but the mechanism by which caffeine modifies synaptic plasticity remains elusive. Here we report that caffeine, at concentrations representing moderate to high levels of consumption in humans, induces an NMDA receptor-independent form of LTP (CAF LTP) in the CA1 region of the hippocampus by promoting calcium-dependent secretion of BDNF, which subsequently activates TrkB-mediated signaling required for the expression of CAF LTP. Our data include the novel observation that insulin receptor substrate 2 (IRS2) is phosphorylated during induction of CAF LTP, a process that requires cytosolic free Ca2+ . Consistent with the involvement of IRS2 signals in caffeine-mediated synaptic plasticity, phosphorylation of Akt (Ser473) in response to LTP induction is defective in Irs2-/- mice, demonstrating that these plasticity changes are associated with downstream targets of the phosphoinositide 3-kinase (PI3K) pathway. These findings indicate that TrkB-IRS2 signals are essential for activation of PI3K during the induction of LTP by caffeine.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Femenino , Proteínas Sustrato del Receptor de Insulina/efectos de los fármacos , Proteínas Sustrato del Receptor de Insulina/genética , Masculino , Ratones , Modelos Animales
12.
J Neurochem ; 136(2): 285-94, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26316048

RESUMEN

Brain-derived neurotrophic factor (BDNF) regulates synaptic strengthening and memory consolidation, and altered BDNF expression is implicated in a number of neuropsychiatric and neurodegenerative disorders. BDNF potentiates N-methyl-D-aspartate receptor function through activation of Fyn and ERK1/2. STriatal-Enriched protein tyrosine Phosphatase (STEP) is also implicated in many of the same disorders as BDNF but, in contrast to BDNF, STEP opposes the development of synaptic strengthening. STEP-mediated dephosphorylation of the NMDA receptor subunit GluN2B promotes internalization of GluN2B-containing NMDA receptors, while dephosphorylation of the kinases Fyn, Pyk2, and ERK1/2 leads to their inactivation. Thus, STEP and BDNF have opposing functions. In this study, we demonstrate that manipulation of BDNF expression has a reciprocal effect on STEP61 levels. Reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. Moreover, a newly identified STEP inhibitor reverses the biochemical and motor abnormalities in BDNF(+/-) mice. In contrast, increased BDNF signaling upon treatment with a tropomyosin receptor kinase B agonist results in degradation of STEP61 and a subsequent increase in the tyrosine phosphorylation of STEP substrates in cultured neurons and in mouse frontal cortex. These findings indicate that BDNF-tropomyosin receptor kinase B signaling leads to degradation of STEP61 , while decreased BDNF expression results in increased STEP61 activity. A better understanding of the opposing interaction between STEP and BDNF in normal cognitive functions and in neuropsychiatric disorders will hopefully lead to better therapeutic strategies. Altered expression of BDNF and STEP61 has been implicated in several neurological disorders. BDNF and STEP61 are known to regulate synaptic strengthening, but in opposite directions. Here, we report that reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. In contrast, activation of TrkB receptor results in the degradation of STEP61 and reverses hyperlocomotor activity in BDNF(+/-) mice. Moreover, inhibition of STEP61 by TC-2153 is sufficient to enhance the Tyr phosphorylation of STEP substrates and also reverses hyperlocomotion in BDNF(+/-) mice. These findings give us a better understanding of the regulation of STEP61 by BDNF in normal cognitive functions and in neuropsychiatric disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Regulación hacia Abajo/fisiología , Neuronas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Benzotiepinas/farmacología , Encéfalo/citología , Factor Neurotrófico Derivado del Encéfalo/genética , Células Cultivadas , Inhibidores de Cisteína Proteinasa/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Embrión de Mamíferos , Femenino , Flavonas/farmacología , Leupeptinas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Neuronas/efectos de los fármacos , Proteínas Tirosina Fosfatasas/genética , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
13.
Neurobiol Dis ; 74: 41-57, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25449908

RESUMEN

Stimulation of dopamine D1 receptor (D1R) and adenosine A2A receptor (A2AR) increases cAMP-dependent protein kinase (PKA) activity in the brain. In Huntington's disease, by essentially unknown mechanisms, PKA activity is increased in the hippocampus of mouse models and patients and contributes to hippocampal-dependent cognitive impairment in R6 mice. Here, we show for the first time that D1R and A2AR density and functional efficiency are increased in hippocampal nerve terminals from R6/1 mice, which accounts for increased cAMP levels and PKA signaling. In contrast, PKA signaling was not altered in the hippocampus of Hdh(Q7/Q111) mice, a full-length HD model. In line with these findings, chronic (but not acute) combined treatment with D1R plus A2AR antagonists (SCH23390 and SCH58261, respectively) normalizes PKA activity in the hippocampus, facilitates long-term potentiation in behaving R6/1 mice, and ameliorates cognitive dysfunction. By contrast, chronic treatment with either D1R or A2AR antagonist alone does not modify PKA activity or improve cognitive dysfunction in R6/1 mice. Hyperactivation of both D1R and A2AR occurs in HD striatum and chronic treatment with D1R plus A2AR antagonists normalizes striatal PKA activity but it does not affect motor dysfunction in R6/1 mice. In conclusion, we show that parallel alterations in dopaminergic and adenosinergic signaling in the hippocampus contribute to increase PKA activity, which in turn selectively participates in hippocampal-dependent learning and memory deficits in HD. In addition, our results point to the chronic inhibition of both D1R and A2AR as a novel therapeutic strategy to manage early cognitive impairment in this neurodegenerative disease.


Asunto(s)
Trastornos del Conocimiento/fisiopatología , Enfermedad de Huntington/fisiopatología , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D1/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Benzazepinas/farmacología , Trastornos del Conocimiento/etiología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiopatología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Antagonistas de Dopamina/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Enfermedad de Huntington/complicaciones , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Pirimidinas/farmacología , Receptores de Dopamina D1/antagonistas & inhibidores , Triazoles/farmacología
14.
J Immunol ; 190(12): 6520-32, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23686490

RESUMEN

Liver X receptors (LXRs) exert key functions in lipid homeostasis and in control of inflammation. In this study we have explored the impact of LXR activation on the macrophage response to the endogenous inflammatory cytokine IFN-γ. Transcriptional profiling studies demonstrate that ∼38% of the IFN-γ-induced transcriptional response is repressed by LXR activation in macrophages. LXRs also mediated inhibitory effects on selected IFN-γ-induced genes in primary microglia and in a model of IFN-γ-induced neuroinflammation in vivo. LXR activation resulted in reduced STAT1 recruitment to the promoters tested in this study without affecting STAT1 phosphorylation. A closer look into the mechanism revealed that SUMOylation of LXRs, but not the presence of nuclear receptor corepressor 1, was required for repression of the NO synthase 2 promoter. We have also analyzed whether IFN-γ signaling exerts reciprocal effects on LXR targets. Treatment with IFN-γ inhibited, in a STAT1-dependent manner, the LXR-dependent upregulation of selective targets, including ATP-binding cassette A1 (ABCA1) and sterol response element binding protein 1c. Downregulation of ABCA1 expression correlated with decreased cholesterol efflux to apolipoprotein A1 in macrophages stimulated with IFN-γ. The inhibitory effects of IFN-γ on LXR signaling did not involve reduced binding of LXR/retinoid X receptor heterodimers to target gene promoters. However, overexpression of the coactivator CREB-binding protein/p300 reduced the inhibitory actions of IFN-γ on the Abca1 promoter, suggesting that competition for CREB-binding protein may contribute to STAT1-dependent downregulation of LXR targets. The results from this study suggest an important level of bidirectional negative cross-talk between IFN-γ/STAT1 and LXRs with implications both in the control of IFN-γ-mediated immune responses and in the regulation of lipid metabolism.


Asunto(s)
Interferón gamma/inmunología , Macrófagos/inmunología , Receptores Nucleares Huérfanos/inmunología , Receptor Cross-Talk/inmunología , Factor de Transcripción STAT1/inmunología , Animales , Western Blotting , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica/inmunología , Inflamación/inmunología , Metabolismo de los Lípidos/fisiología , Receptores X del Hígado , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Nucleares Huérfanos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/fisiología , Transcriptoma
16.
Front Neurosci ; 18: 1394478, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903599

RESUMEN

VPS13A disease and Huntington's disease (HD) are two basal ganglia disorders that may be difficult to distinguish clinically because they have similar symptoms, neuropathological features, and cellular dysfunctions with selective degeneration of the medium spiny neurons of the striatum. However, their etiology is different. VPS13A disease is caused by a mutation in the VPS13A gene leading to a lack of protein in the cells, while HD is due to an expansion of CAG repeat in the huntingtin (Htt) gene, leading to aberrant accumulation of mutant Htt. Considering the similarities of both diseases regarding the selective degeneration of striatal medium spiny neurons, the involvement of VPS13A in the molecular mechanisms of HD pathophysiology cannot be discarded. We analyzed the VPS13A distribution in the striatum, cortex, hippocampus, and cerebellum of a transgenic mouse model of HD. We also quantified the VPS13A levels in the human cortex and putamen nucleus; and compared data on mutant Htt-induced changes in VPS13A expression from differential expression datasets. We found that VPS13A brain distribution or expression was unaltered in most situations with a decrease in the putamen of HD patients and small mRNA changes in the striatum and cerebellum of HD mice. We concluded that the selective susceptibility of the striatum in VPS13A disease and HD may be a consequence of disturbances in different cellular processes with convergent molecular mechanisms already to be elucidated.

17.
Neurobiol Dis ; 52: 219-28, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23295856

RESUMEN

Huntington's disease is characterized by the formation of protein aggregates, which can be degraded by macroautophagy. Here, we studied protein levels and intracellular distribution of p62 and NBR1, two macroautophagy cargo receptors, during disease progression. In R6/1 mice, p62 and NBR1 protein levels were decreased in all brain regions analyzed early in the disease, whereas at late stages they accumulated in the striatum and hippocampus, but not in the cortex. The accumulation of p62, but not NBR1, occurred in neuronal nuclei, where it co-localized with mutant huntingtin inclusions, both in R6/1 and Huntington's disease patients. Moreover, exportin-1 was selectively decreased in old R6/1 mice brain, and could worsen p62 nuclear accumulation. In conclusion, p62 interacts with mutant huntingtin and is retained in the nucleus along the progression of the disease, mostly in striatal and hippocampal neurons. Thus, cytoplasmic NBR1 might be important to maintain basal levels of selective macroautophagy in these neurons.


Asunto(s)
Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Hipocampo/metabolismo , Enfermedad de Huntington/metabolismo , Proteínas/metabolismo , Factores de Transcripción/metabolismo , Factores de Edad , Animales , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Proteína Huntingtina , Cuerpos de Inclusión/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Carioferinas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Especificidad de Órganos , Receptores Citoplasmáticos y Nucleares/metabolismo , Factor de Transcripción TFIIH , Proteína Exportina 1
18.
Hippocampus ; 23(8): 684-95, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23576401

RESUMEN

Huntington's disease (HD) causes motor disturbances, preceded by cognitive impairment, in patients and mouse models. We showed that increased hippocampal cAMP-dependent protein kinase (PKA) signaling disrupts recognition and spatial memories in R6 HD mouse models. However, unchanged levels of hippocampal phosphorylated (p) cAMP-responsive element-binding protein (CREB) suggested unaltered nuclear PKA activity in R6 mice. Here, we extend this finding by showing that nuclear pPKA catalytic subunit (Thr197) and pPKA substrate levels were unaltered in the hippocampus of R6/1 mice. Phosphodiesterases (PDEs) play an important role in the regulation of PKA activity. PDE10A, a cAMP/cGMP dual-substrate PDE, was reported to be restricted to the nuclear region in nonstriatal neurons. Using cell fractionation we confirmed that PDE10A was enriched in nuclear fractions, both in wild-type and R6/1 mice hippocampus, without differences in its levels or intracellular distribution between genotypes. We next investigated whether inhibition of PDE10 with papaverine could improve cognitive function in HD mice. Papaverine treatment improved spatial and object recognition memories in R6/1 mice, and significantly increased pGluA1 and pCREB levels in R6/1 mice hippocampus. Papaverine likely acted through the activation of the PKA pathway as the phosphorylation level of distinct cGMP-dependent kinase (cGK) substrates was not modified in either genotype. Moreover, hippocampal cAMP, but not cGMP, levels were increased after acute papaverine injection. Our results show that inhibition of PDE10 improves cognition in R6 mice, at least in part through increased GluA1 and CREB phosphorylation. Thus, PDE10 might be a good therapeutic target to improve cognitive impairment in HD.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Trastornos de la Memoria/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Reconocimiento en Psicología/fisiología , Percepción Espacial/fisiología , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Enfermedad de Huntington/complicaciones , Enfermedad de Huntington/genética , Aprendizaje por Laberinto , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Ratones , Ratones Transgénicos , Papaverina/uso terapéutico , Inhibidores de Fosfodiesterasa/uso terapéutico , Fosforilación/efectos de los fármacos , Receptores AMPA , Reconocimiento en Psicología/efectos de los fármacos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Percepción Espacial/efectos de los fármacos , Factores de Tiempo , Repeticiones de Trinucleótidos/genética
19.
Hum Mol Genet ; 20(21): 4232-47, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21835884

RESUMEN

Huntington's disease (HD) patients and mouse models show learning and memory impairment even before the onset of motor symptoms. However, the molecular events involved in this cognitive decline are still poorly understood. Here, using three different paradigms, the novel object recognition test, the T-maze spontaneous alternation task and the Morris water maze, we detected severe cognitive deficits in the R6/1 mouse model of HD before the onset of motor symptoms. When we examined the putative molecular pathways involved in these alterations, we observed hippocampal cAMP-dependent protein kinase (PKA) hyper-activation in naïve R6/1 mice compared with wild-type (WT) mice, whereas extracellular signal-regulated kinase 1/2 and calcineurin activities were not modified. Increased PKA activity resulted in hyper-phosphorylation of its substrates N-methyl-D-aspartate receptor subunit 1, Ras-guanine nucleotide releasing factor-1 and striatal-enriched protein tyrosine phosphatase, but not cAMP-responsive element binding protein or the microtubule-associated protein tau. In correlation with the over-activation of the PKA pathway, we found a down-regulation of the protein levels of some phosphodiesterase (PDE) 4 family members. Similar molecular changes were found in the hippocampus of R6/2 mice and HD patients. Furthermore, chronic treatment of WT mice with the PDE4 inhibitor rolipram up-regulated PKA activity, and induced learning and memory deficits similar to those seen in R6 mice, but had no effect on R6/1 mice cognitive impairment. Importantly, hippocampal PKA inhibition by infusion of Rp-cAMPS restored long-term memory in R6/2 mice. Thus, our results suggest that occlusion of PKA-dependent processes is one of the molecular mechanisms underlying cognitive decline in R6 animals.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/fisiopatología , Memoria , Transducción de Señal , Animales , Calcineurina/metabolismo , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/fisiopatología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Progresión de la Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Hipocampo/patología , Humanos , Enfermedad de Huntington/complicaciones , Enfermedad de Huntington/patología , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Mutantes Neurológicos , Ratones Transgénicos , Inhibidores de Fosfodiesterasa 4/farmacología , Isoformas de Proteínas/metabolismo , Reconocimiento en Psicología/efectos de los fármacos , Reproducibilidad de los Resultados , Rolipram/administración & dosificación , Rolipram/efectos adversos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
20.
J Extracell Vesicles ; 12(11): e12378, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37932242

RESUMEN

Extracellular vesicles (EVs) play a crucial role in intercellular communication, participating in the paracrine trophic support or in the propagation of toxic molecules, including proteins. RTP801 is a stress-regulated protein, whose levels are elevated during neurodegeneration and induce neuron death. However, whether RTP801 toxicity is transferred trans-neuronally via EVs remains unknown. Hence, we overexpressed or silenced RTP801 protein in cultured cortical neurons, isolated their derived EVs (RTP801-EVs or shRTP801-EVs, respectively), and characterized EVs protein content by mass spectrometry (MS). RTP801-EVs toxicity was assessed by treating cultured neurons with these EVs and quantifying apoptotic neuron death and branching. We also tested shRTP801-EVs functionality in the pathologic in vitro model of 6-Hydroxydopamine (6-OHDA). Expression of RTP801 increased the number of EVs released by neurons. Moreover, RTP801 led to a distinct proteomic signature of neuron-derived EVs, containing more pro-apoptotic markers. Hence, we observed that RTP801-induced toxicity was transferred to neurons via EVs, activating apoptosis and impairing neuron morphology complexity. In contrast, shRTP801-EVs were able to increase the arborization in recipient neurons. The 6-OHDA neurotoxin elevated levels of RTP801 in EVs, and 6-OHDA-derived EVs lost the mTOR/Akt signalling activation via Akt and RPS6 downstream effectors. Interestingly, EVs derived from neurons where RTP801 was silenced prior to exposing them to 6-OHDA maintained Akt and RPS6 transactivation in recipient neurons. Taken together, these results suggest that RTP801-induced toxicity is transferred via EVs, and therefore, it could contribute to the progression of neurodegenerative diseases, in which RTP801 is involved.


Asunto(s)
Vesículas Extracelulares , Factores de Transcripción , Factores de Transcripción/metabolismo , Oxidopamina/toxicidad , Proteómica , Proteínas Proto-Oncogénicas c-akt , Vesículas Extracelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA