Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Osteoporos Int ; 26(4): 1395-404, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25586761

RESUMEN

UNLABELLED: Evidence suggests that creatine may have some beneficial effects on bone. The study aimed to investigate the effects of exercise alone or combined with creatine on bone health in ovariectomized rats. Findings show that exercise, but not creatine, has an important role in improving bone health. INTRODUCTION: The aim of this study was to investigate the effects of exercise training alone or combined with creatine supplementation on bone health parameters in ovariectomized rats. METHODS: Wistar rats were randomly allocated into one of five groups: (i) sham-operated, (ii) ovariectomized non-trained placebo-supplemented, (iii) ovariectomized non-trained creatine-supplemented, (iv) ovariectomized exercise-trained placebo-supplemented, and (v) ovariectomized exercise-trained creatine-supplemented. Downhill running training and/or creatine supplementation (300 mg/kg body weight) were administered for 12 weeks. Bone mineral content (BMC), bone mineral density (BMD), and biomechanical and histomorphometric parameters were assessed. RESULTS: No interaction effects were observed for BMC and BMD at whole body, femur, and lumbar spine (p > 0.05). Importantly, a main effect of training was detected for whole body BMC and BMD (p = 0.003 and p < 0.001, respectively), femoral BMC and BMD (p = 0.005 and p < 0.001, respectively), and lumbar spine BMC and BMD (p < 0.001 and p < 0.001, respectively), suggesting that the trained animals had higher bone mass, irrespective of creatine supplementation. Main effects of training were also observed for maximal load (p < 0.001), stiffness (p < 0.001), and toughness (p = 0.046), indicating beneficial effects of exercise training on bone strength. Neither a main effect of supplementation nor an interaction effect was detected for biomechanical parameters (p > 0.05). No main or interaction effects were observed for any of the histomorphometric parameters evaluated (p > 0.05). CONCLUSIONS: Exercise training, but not creatine supplementation, attenuated ovariectomy-induced bone loss in this rat model.


Asunto(s)
Densidad Ósea/fisiología , Creatina/uso terapéutico , Suplementos Dietéticos , Osteoporosis/prevención & control , Condicionamiento Físico Animal , Absorciometría de Fotón/métodos , Animales , Peso Corporal/fisiología , Terapia Combinada , Femenino , Fémur/fisiopatología , Vértebras Lumbares/fisiopatología , Osteoporosis/fisiopatología , Ovariectomía , Distribución Aleatoria , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA