Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38894192

RESUMEN

Quartz Crystal Microbalances (QCMs) are versatile sensors employed in various fields, from environmental monitoring to biomedical applications, owing mainly to their very high sensitivity. However, the assessment of their metrological performance, including the impact of conditioning circuits, digital processing algorithms, and working conditions, is a complex and novel area of study. The purpose of this work is to investigate and understand the measurement errors associated with different QCM measurement techniques, specifically focusing on the influence of conditioning electronic circuits. Through a tailored and novel experimental setup, two measurement architectures-a Quartz Crystal Microbalance with dissipation monitoring (QCM-D) system and an oscillator-based QCM-R system-were compared under the same mechanical load conditions. Through rigorous experimentation and signal processing techniques, the study elucidated the complexities of accurately assessing QCM parameters, especially in liquid environments and under large mechanical loads. The comparison between the two different techniques allows for highlighting the critical aspects of the measurement techniques. The experimental results were discussed and interpreted based on models allowing for a deep understanding of the measurement problems encountered with QCM-based measurement systems. The performance of the different techniques was derived, showing that while the QCM-D technique exhibited higher accuracy, the QCM-R technique offered greater precision with a simpler design. This research advances our understanding of QCM-based measurements, providing insights for designing robust measurement systems adaptable to diverse conditions, thus enhancing their effectiveness in various applications.

2.
Sensors (Basel) ; 24(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38257468

RESUMEN

This paper addresses indoor localization using an anchor-based system based on Bluetooth Low Energy (BLE) 5.0 technology, adopting the Received Signal Strength Indicator (RSSI) for the distance estimation. Different solutions have been proposed in the scientific literature to improve the performance of this localization technology, but a detailed performance comparison of these solutions is still missing. The aim of this work is to make an experimental analysis combining different solutions for the performance improvement of BLE-based indoor localization, identifying the most effective one. The considered solutions involve different RSSI signals' conditioning, the use of anchor-tag distance estimation techniques, as well as approaches for estimating the unknown tag position. An experimental campaign was executed in a complex indoor environment, characterized by the continuous presence in the movement of working staff and numerous obstacles. The exploitation of multichannel transmission using RSSI signal aggregation techniques showed the greater performance improvement of the localization system, reducing the positioning error (from 1.5 m to about 1 m). The other examined solutions have shown a lesser impact in the performance improvement with a decrease or an increase in the positioning errors, depending on the considered combination of the adopted solutions.

3.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37420768

RESUMEN

The paper works on the new combination between the No Motion No Integration filter (NMNI) and the Kalman Filter (KF) to optimize the conducted vibration for orientation angles during drone operation. The drone's roll, pitch, and yaw with just accelerometer and gyroscope were analyzed under the noise impact. A 6 Degree of Freedom (DoF) Parrot Mambo drone with Matlab/Simulink package was used to validate the advancements before and after fusing NMNI with KF. The drone propeller motors were controlled at a suitable speed level to keep the drone on the zero-inclination ground for angle error validation. The experiments show that KF alone successfully minimizes the variation for the inclination, but it still needs the NMNI support to enhance the performance in noise deduction, with the error only about 0.02°. In addition, the NMNI algorithm successfully prevents the yaw/heading from gyroscope drifting due to the zero-value integration during no rotation with the maximum error of 0.03°.


Asunto(s)
Algoritmos , Dispositivos Aéreos No Tripulados , Rotación , Vibración
4.
Sensors (Basel) ; 21(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810301

RESUMEN

Coronavirus disease 19 (COVID-19) is a virus that spreads through contact with the respiratory droplets of infected persons, so quarantine is mandatory to break the infection chain. This paper proposes a wearable device with the Internet of Things (IoT) integration for real-time monitoring of body temperature the indoor condition via an alert system to the person in quarantine. The alert is transferred when the body thermal exceeds the allowed threshold temperature. Moreover, an algorithm Repetition Spikes Counter (RSC) based on an accelerometer is employed in the role of human activity recognition to realize whether the quarantined person is doing physical exercise or not, for auto-adjustment of threshold temperature. The real-time warning and stored data analysis support the family members/doctors in following and updating the quarantined people's body temperature behavior in the tele-distance. The experiment includes an M5stickC wearable device, a Microelectromechanical system (MEMS) accelerometer, an infrared thermometer, and a digital temperature sensor equipped with the user's wrist. The indoor temperature and humidity are measured to restrict the virus spread and supervise the room condition of the person in quarantine. The information is transferred to the cloud via Wi-Fi with Message Queue Telemetry Transport (MQTT) broker. The Bluetooth is integrated as an option for the data transfer from the self-isolated person to the electronic device of a family member in the case of Wi-Fi failed connection. The tested result was obtained from a student in quarantine for 14 days. The designed system successfully monitored the body temperature, exercise activity, and indoor condition of the quarantined person that handy during the Covid-19 pandemic.


Asunto(s)
Acelerometría , Temperatura Corporal , COVID-19 , Internet de las Cosas , Sistemas Microelectromecánicos , Cuarentena , Termometría , Humanos , Pandemias , Telemetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA