Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 36(11): 3106-14, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26985023

RESUMEN

Repeated exposure to psychostimulants induces locomotor sensitization and leads to persistent changes in the circuitry of the mesocorticolimbic dopamine (DA) system. G-protein-gated inwardly rectifying potassium (GIRK; also known as Kir3) channels mediate a slow IPSC and control the excitability of DA neurons. Repeated 5 d exposure to psychostimulants decreases the size of the GABAB receptor (GABABR)-activated GIRK currents (IBaclofen) in ventral tegmental area (VTA) DA neurons of mice, but the mechanism underlying this plasticity is poorly understood. Here, we show that methamphetamine-dependent attenuation of GABABR-GIRK currents in VTA DA neurons required activation of both D1R-like and D2R-like receptors. The methamphetamine-dependent decrease in GABABR-GIRK currents in VTA DA neurons did not depend on a mechanism of dephosphorylation of the GABAB R2 subunit found previously for other neurons in the reward pathway. Rather, the presence of the GIRK3 subunit appeared critical for the methamphetamine-dependent decrease of GABABR-GIRK current in VTA DA neurons. Together, these results highlight different regulatory mechanisms in the learning-evoked changes that occur in the VTA with repeated exposure to psychostimulants. SIGNIFICANCE STATEMENT: Exposure to addictive drugs such as psychostimulants produces persistent adaptations in inhibitory circuits within the mesolimbic dopamine system, suggesting that addictive behaviors are encoded by changes in the reward neural circuitry. One form of neuroadaptation that occurs with repeated exposure to psychostimulants is a decrease in slow inhibition, mediated by a GABAB receptor and a potassium channel. Here, we examine the subcellular mechanism that links psychostimulant exposure with changes in slow inhibition and reveal that one type of potassium channel subunit is important for mediating the effect of repeated psychostimulant exposure. Dissecting out the components of drug-dependent plasticity and uncovering novel protein targets in the reward circuit may lead to the development of new therapeutics for treating addiction.


Asunto(s)
Dopaminérgicos/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Metanfetamina/farmacología , Receptores de GABA-B/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/citología , Animales , Animales Recién Nacidos , Baclofeno/farmacología , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Agonistas de Receptores GABA-B/farmacología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de GABA-B/genética , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tirosina 3-Monooxigenasa/genética
2.
J Neurosci ; 27(4): 886-92, 2007 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-17251430

RESUMEN

The binding pockets of Cys-loop receptors are dominated by aromatic amino acids. In the GABA(A) receptor alpha1Phe65, beta2Tyr97, beta2Tyr157, and beta2Tyr205 are present at the beta2/alpha1 interface and have been implicated in forming an important part of the GABA binding site. Here, we have probed interactions of these residues using subtle chemical changes: unnatural amino acid mutagenesis was used to introduce a range of Phe analogs, and mutant receptors expressed in oocytes were studied using voltage-clamp electrophysiology. Serial mutations at beta(2)97 revealed a approximately 20-fold increase in EC50 with the addition of each fluorine atom to a phenylalanine, indicating a cation-pi interaction between GABA and this residue. This is the first example of a cation-pi interaction in loop A of a Cys-loop receptor. Along with previous studies that identified cation-pi interactions in loop B and loop C, the result emphasizes that the location of this interaction is not conserved in the Cys-loop family. The data further show that alpha(1)65 (in loop D) is tolerant to subtle changes. Conversely, mutating either beta2Tyr157 (in loop B) or beta2Tyr205 (in loop C) to Phe substantially disrupts receptor function. Substitution of 4-F-Phe, however, at either position, or 4-MeO-Phe at beta2Tyr157, resulted in receptors with wild-type EC50 values, suggesting a possible hydrogen bond. The molecular scale insights provided by these data allow the construction of a model for GABA docking to the agonist binding site of the GABA(A) receptor.


Asunto(s)
Sustitución de Aminoácidos/genética , Mutagénesis Sitio-Dirigida , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Tirosina/genética , Ácido gamma-Aminobutírico/metabolismo , Animales , Sitios de Unión/genética , Cationes , Femenino , Humanos , Modelos Moleculares , Oocitos , Estructura Secundaria de Proteína/genética , Receptores de GABA-A/química , Tirosina/metabolismo , Xenopus
3.
Neuron ; 73(5): 978-89, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-22405207

RESUMEN

Psychostimulants induce neuroadaptations in excitatory and fast inhibitory transmission in the ventral tegmental area (VTA). Mechanisms underlying drug-evoked synaptic plasticity of slow inhibitory transmission mediated by GABA(B) receptors and G protein-gated inwardly rectifying potassium (GIRK/Kir(3)) channels, however, are poorly understood. Here, we show that 1 day after methamphetamine (METH) or cocaine exposure both synaptically evoked and baclofen-activated GABA(B)R-GIRK currents were significantly depressed in VTA GABA neurons and remained depressed for 7 days. Presynaptic inhibition mediated by GABA(B)Rs on GABA terminals was also weakened. Quantitative immunoelectron microscopy revealed internalization of GABA(B1) and GIRK2, which occurred coincident with dephosphorylation of serine 783 (S783) in GABA(B2), a site implicated in regulating GABA(B)R surface expression. Inhibition of protein phosphatases recovered GABA(B)R-GIRK currents in VTA GABA neurons of METH-injected mice. This psychostimulant-evoked impairment in GABA(B)R signaling removes an intrinsic brake on GABA neuron spiking, which may augment GABA transmission in the mesocorticolimbic system.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Regulación hacia Abajo/efectos de los fármacos , Metanfetamina/farmacología , Neuronas/efectos de los fármacos , Receptores de GABA-A/metabolismo , Área Tegmental Ventral/citología , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Animales Recién Nacidos , Baclofeno/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Channelrhodopsins , Dopamina/farmacología , Dopaminérgicos/farmacología , Interacciones Farmacológicas , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/ultraestructura , Agonistas de Receptores GABA-B/farmacología , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Inmunoelectrónica/métodos , Neuronas/metabolismo , Neuronas/ultraestructura , Compuestos Organofosforados/farmacología , Fosforilación , Receptores de GABA-A/ultraestructura , Factores de Transcripción/genética , Área Tegmental Ventral/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología
4.
PLoS One ; 6(2): e17152, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21390329

RESUMEN

BACKGROUND: GABA(A) receptors are members of the Cys-loop family of neurotransmitter receptors, proteins which are responsible for fast synaptic transmission, and are the site of action of wide range of drugs. Recent work has shown that Cys-loop receptors are present on immune cells, but their physiological roles and the effects of drugs that modify their function in the innate immune system are currently unclear. We are interested in how and why anaesthetics increase infections in intensive care patients; a serious problem as more than 50% of patients with severe sepsis will die. As many anaesthetics act via GABA(A) receptors, the aim of this study was to determine if these receptors are present on immune cells, and could play a role in immunocompromising patients. PRINCIPAL FINDINGS: We demonstrate, using RT-PCR, that monocytes express GABA(A) receptors constructed of α1, α4, ß2, γ1 and/or δ subunits. Whole cell patch clamp electrophysiological studies show that GABA can activate these receptors, resulting in the opening of a chloride-selective channel; activation is inhibited by the GABA(A) receptor antagonists bicuculline and picrotoxin, but not enhanced by the positive modulator diazepam. The anaesthetic drugs propofol and thiopental, which can act via GABA(A) receptors, impaired monocyte function in classic immunological chemotaxis and phagocytosis assays, an effect reversed by bicuculline and picrotoxin. SIGNIFICANCE: Our results show that functional GABA(A) receptors are present on monocytes with properties similar to CNS GABA(A) receptors. The functional data provide a possible explanation as to why chronic propofol and thiopental administration can increase the risk of infection in critically ill patients: their action on GABA(A) receptors inhibits normal monocyte behaviour. The data also suggest a potential solution: monocyte GABA(A) receptors are insensitive to diazepam, thus the use of benzodiazepines as an alternative anesthetising agent may be advantageous where infection is a life threatening problem.


Asunto(s)
Anestésicos/efectos adversos , Enfermedades del Sistema Inmune/inducido químicamente , Sistema Inmunológico/efectos de los fármacos , Receptores de GABA-A/fisiología , Anestésicos/farmacología , Bicuculina/farmacología , Línea Celular , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/agonistas , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/genética , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/metabolismo , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/fisiología , Evaluación Preclínica de Medicamentos , Antagonistas del GABA/farmacología , Agonistas de Receptores de GABA-A/farmacología , Humanos , Sistema Inmunológico/metabolismo , Sistema Inmunológico/fisiología , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/metabolismo , Huésped Inmunocomprometido/efectos de los fármacos , Huésped Inmunocomprometido/inmunología , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/fisiología , Muscimol/farmacología , Picrotoxina/farmacología , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
5.
Adv Pharmacol ; 58: 123-47, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20655481

RESUMEN

GABA(B) receptors have been found to play a key role in regulating membrane excitability and synaptic transmission in the brain. The GABA(B) receptor is a G-protein coupled receptor (GPCR) that associates with a subset of G-proteins (pertussis toxin sensitive Gi/o family), that in turn regulate specific ion channels and trigger cAMP cascades. In this review, we describe the relationships between the GABA(B) receptor, its effectors and associated proteins that mediate GABA(B) receptor function within the brain. We discuss a unique feature of the GABA(B) receptor, the requirement for heterodimerization to produce functional receptors, as well as an increasing body of evidence that suggests GABA(B) receptors comprise a macromolecular signaling heterocomplex, critical for efficient targeting and function of the receptors. Within this complex, GABA(B) receptors associate specifically with Gi/o G-proteins that regulate voltage-gated Ca(2+) (Ca(V)) channels, G-protein activated inwardly rectifying K(+) (GIRK) channels, and adenylyl cyclase. Numerous studies have revealed that lipid rafts, scaffold proteins, targeting motifs in the receptor, and regulators of G-protein signaling (RGS) proteins also contribute to the function of GABA(B) receptors and affect cellular processes such as receptor trafficking and activity-dependent desensitization. This complex regulation of GABA(B) receptors in the brain may provide opportunities for new ways to regulate GABA-dependent inhibition in normal and diseased states of the nervous system.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Canales Iónicos/metabolismo , Receptores de GABA-B/metabolismo , Animales , Humanos , Complejos Multiproteicos/metabolismo , Receptores de GABA-B/química , Transducción de Señal
6.
J Biol Chem ; 283(5): 2702-8, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17974564

RESUMEN

GABA(A) receptors can be modulated by benzodiazepines, although these compounds do not directly activate or inhibit the receptors. The prototypic benzodiazepine, diazepam, potentiates responses to GABA in GABA(A) receptors that contain a gamma subunit. Here we have used mutagenesis, radioligand binding, voltage clamp electrophysiology, and homology modeling to probe the role of the F-loop residues Asp(192)-Arg(197) in the GABA(A) receptor gamma(2) subunit in diazepam potentiation of the GABA response. Substitution of all of these residues with Ala and/or a residue with similar chemical properties to the wild type residue decreased the level of diazepam potentiation, and one mutation (D192A) resulted in its complete ablation. None of the mutations changed the GABA EC(50) or the [(3)H]flumazenil binding affinity, suggesting they do not affect GABA or benzodiazepine binding characteristics; we therefore propose that they are involved in the diazepam-mediated conformational change that results in an increased response to GABA. Homology models of the receptor binding pocket in agonist-bound and unbound states suggest that the F-loop is flexible and has different orientations in the two states. Considering our data in relation to these models, we find that the F-loop residues could contribute to hydrogen bond networks and hydrophobic interactions with neighboring residues that change during receptor activation.


Asunto(s)
Diazepam/farmacología , Moduladores del GABA/farmacología , Receptores de GABA-A/química , Receptores de GABA-A/efectos de los fármacos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Línea Celular , Femenino , Humanos , Enlace de Hidrógeno , Técnicas In Vitro , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oocitos/metabolismo , Técnicas de Placa-Clamp , Conformación Proteica , Ensayo de Unión Radioligante , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Xenopus laevis
7.
J Biol Chem ; 281(24): 16576-82, 2006 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-16595668

RESUMEN

The 5-HT(3) receptor is a member of the Cys-loop family of ligand-gated ion channels. The extracellular domains of these proteins contain six amino acid loops (A-F) that converge to form the ligand binding site. In this study we have mutated 21 residues in or close to the 5-HT(3) receptor F-loop (Ile(192) to Gly(212)) to Ala or to a residue with similar chemical properties. Mutant receptors were expressed in HEK293 cells, and binding affinity was measured using [(3)H]granisetron. Two regions displayed decreases in binding affinity when mutated to Ala (Ile(192)-Arg(196) and Asp(204)-Ser(206)), but only one region was sensitive when mutated to chemically similar residues (Ile(192)-Val(201)). Homology modeling using acetylcholine-binding protein crystal structures with a variety of different bound ligands suggests there may be distinct movements of Trp(195) and Asp(204) upon ligand binding, indicating that these residues and their immediate neighbors have the ability to interact differently with different ligands. The models suggest predominantly lateral movement around Asp(204) and rotational movement around Trp(195), indicating the former is in a more flexible region. Overall our results are consistent with a flexible 5-HT(3) receptor F-loop with two regions that have specific but distinct roles in ligand binding.


Asunto(s)
Mutación , Receptores de Serotonina 5-HT3/química , Alanina/química , Secuencia de Aminoácidos , Carbono/química , Línea Celular , Humanos , Cinética , Microscopía Confocal , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA