Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 24(2): 293-303, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23118198

RESUMEN

Corticostriatal projection neurons (CStrPN) project from the neocortex to ipsilateral and contralateral striata to control and coordinate motor programs and movement. They are clinically important as the predominant cortical population that degenerates in Huntington's disease and corticobasal ganglionic degeneration, and their injury contributes to multiple forms of cerebral palsy. Together with their well-studied functions in motor control, these clinical connections make them a functionally, behaviorally, and clinically important population of neocortical neurons. Little is known about their development. "Intratelencephalic" CStrPN (CStrPNi), projecting to the contralateral striatum, with their axons fully within the telencephalon (intratelencephalic), are a major population of CStrPN. CStrPNi are of particular interest developmentally because they share hodological and axon guidance characteristics of both callosal projection neurons (CPN) and corticofugal projection neurons (CFuPN); CStrPNi send axons contralaterally before descending into the contralateral striatum. The relationship of CStrPNi development to that of broader CPN and CFuPN populations remains unclear; evidence suggests that CStrPNi might be evolutionary "hybrids" between CFuPN and deep layer CPN-in a sense "chimeric" with both callosal and corticofugal features. Here, we investigated the development of CStrPNi in mice-their birth, maturation, projections, and expression of molecular developmental controls over projection neuron subtype identity.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/crecimiento & desarrollo , Cuerpo Estriado/anatomía & histología , Cuerpo Estriado/crecimiento & desarrollo , Neuronas/citología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Axones/metabolismo , Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Proteínas de Unión al ADN/metabolismo , Inmunohistoquímica , Indoles , Proteínas con Dominio LIM/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/anatomía & histología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Trazadores del Tracto Neuronal , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXD/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
2.
bioRxiv ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712174

RESUMEN

Corticospinal neurons (CSN) centrally degenerate in amyotrophic lateral sclerosis (ALS), along with spinal motor neurons, and loss of voluntary motor function in spinal cord injury (SCI) results from damage to CSN axons. For functional regeneration of specifically affected neuronal circuitry in vivo , or for optimally informative disease modeling and/or therapeutic screening in vitro , it is important to reproduce the type or subtype of neurons involved. No such appropriate in vitro models exist with which to investigate CSN selective vulnerability and degeneration in ALS, or to investigate routes to regeneration of CSN circuitry for ALS or SCI, critically limiting the relevance of much research. Here, we identify that the HMG-domain transcription factor Sox6 is expressed by a subset of NG2+ endogenous cortical progenitors in postnatal and adult cortex, and that Sox6 suppresses a latent neurogenic program by repressing inappropriate proneural Neurog2 expression by progenitors. We FACS-purify these genetically accessible progenitors from postnatal mouse cortex and establish a pure culture system to investigate their potential for directed differentiation into CSN. We then employ a multi-component construct with complementary and differentiation-sharpening transcriptional controls (activating Neurog2, Fezf2 , while antagonizing Olig2 with VP16:Olig2 ). We generate corticospinal-like neurons from SOX6+/NG2+ cortical progenitors, and find that these neurons differentiate with remarkable fidelity compared with corticospinal neurons in vivo . They possess appropriate morphological, molecular, transcriptomic, and electrophysiological characteristics, without characteristics of the alternate intracortical or other neuronal subtypes. We identify that these critical specifics of differentiation are not reproduced by commonly employed Neurog2 -driven differentiation. Neurons induced by Neurog2 instead exhibit aberrant multi-axon morphology and express molecular hallmarks of alternate cortical projection subtypes, often in mixed form. Together, this developmentally-based directed differentiation from genetically accessible cortical progenitors sets a precedent and foundation for in vitro mechanistic and therapeutic disease modeling, and toward regenerative neuronal repopulation and circuit repair.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA