Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(17): 3425-3438, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38590227

RESUMEN

We have applied the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to prepare a library of ten coumarin-azasugar-benzyl conjugates and two phthalimide-azasugar-benzyl conjugates with potential anti-Alzheimer and anti-cancer properties. The compounds were evaluated as cholinesterase inhibitors, demonstrating a general preference, of up to 676-fold, for the inhibition of butyrylcholinesterase (BuChE) over acetylcholinesterase (AChE). Nine of the compounds behaved as stronger BuChE inhibitors than galantamine, one of the few drugs in clinical use against Alzheimer's disease. The most potent BuChE inhibitor (IC50 = 74 nM) was found to exhibit dual activities, as it also showed high activity (GI50 = 5.6 ± 1.1 µM) for inhibiting the growth of WiDr (colon cancer cells). In vitro studies on this dual-activity compound on Cerebellar Granule Neurons (CGNs) demonstrated that it displays no neurotoxicity.


Asunto(s)
Antineoplásicos , Butirilcolinesterasa , Proliferación Celular , Inhibidores de la Colinesterasa , Cumarinas , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Butirilcolinesterasa/metabolismo , Humanos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/síntesis química , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Línea Celular Tumoral , Relación Estructura-Actividad , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Aza/química , Compuestos Aza/farmacología , Compuestos Aza/síntesis química , Relación Dosis-Respuesta a Droga , Neuronas/efectos de los fármacos
2.
Bioorg Chem ; 149: 107485, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824700

RESUMEN

There is a continuous and pressing need to establish new brain-penetrant bioactive compounds with anti-cancer properties. To this end, a new series of 4'-((4-substituted-4,5-dihydro-1H-1,2,3-triazol-1-yl)methyl)-[1,1'-biphenyl]-2-carbonitrile (OTBN-1,2,3-triazole) derivatives were synthesized by click chemistry. The series of bioactive compounds were designed and synthesized from diverse alkynes and N3-OTBN, using copper (II) acetate monohydrate in aqueous dimethylformamide at room temperature. Besides being highly cost-effective and significantly reducing synthesis, the reaction yielded 91-98 % of the target products without the need of any additional steps or chromatographic techniques. Two analogues exhibit promising anti-cancer biological activities. Analogue 4l shows highly specific cytostatic activity against lung cancer cells, while analogue 4k exhibits pan-cancer anti-growth activity. A kinase screen suggests compound 4k has single-digit micromolar activity against kinase STK33. High STK33 RNA expression correlates strongly with poorer patient outcomes in both adult and pediatric glioma. Compound 4k potently inhibits cell proliferation, invasion, and 3D neurosphere formation in primary patient-derived glioma cell lines. The observed anti-cancer activity is enhanced in combination with specific clinically relevant small molecule inhibitors. Herein we establish a novel biochemical kinase inhibitory function for click-chemistry-derived OTBN-1,2,3-triazole analogues and further report their anti-cancer activity in vitro for the first time.


Asunto(s)
Antineoplásicos , Proliferación Celular , Química Clic , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Triazoles , Humanos , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Estructura Molecular , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Línea Celular Tumoral , Nitrilos/química , Nitrilos/farmacología , Nitrilos/síntesis química
3.
Bioorg Chem ; 145: 107168, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354500

RESUMEN

Being aware of the need to develop more efficient therapies against cancer, herein we disclose an innovative approach for the design of selective antiproliferative agents. We have accomplished the conjugation of a coumarin fragment with lipophilic cations (triphenylphosphonium salts, guanidinium) for providing mitochondriotropic agents that simultaneously target also carbonic anhydrases IX and XII, involved in the development and progression of cancer. The new compounds prepared herein turned out to be strong inhibitors of carbonic anhydrases IX and XII of human origin (low-to-mid nM range), also endowed with high selectivity, exhibiting negligible activity towards cytosolic CA isoforms. Key interactions with the enzyme were analysed using docking and molecular dynamics simulations. Regarding their in vitro antiproliferative activities, an increase of the tether length connecting both pharmacophores led to a clear improvement in potency, reaching the submicromolar range for the lead compounds, and an outstanding selectivity towards tumour cell lines (S.I. up to >357). Cytotoxic effects were also analysed on MDR cell lines under hypoxic and normoxic conditions. Chemoresistance exhibited by phosphonium salts, and not by guanidines, against MDR cells was based on the fact that the former were found to be substrates of P-glycoprotein (P-gp), the pump responsible for extruding foreign chemicals; this situation was reversed by administrating tariquidar, a third generation P-gp inhibitor. Moreover, phosphonium salts provoked a profound depolarization of mitochondria membranes from tumour cells, thus probably compromising their oxidative metabolism. To gain insight into the mode of action of title compounds, continuous live cell microscopy was employed; interestingly, this technique revealed two different antiproliferative mechanisms for both families of mitocans. Whereas phosphonium salts had a cytostatic effect, blocking cell division, guanidines led to cell death via apoptosis.


Asunto(s)
Antineoplásicos , Anhidrasas Carbónicas , Compuestos Organofosforados , Humanos , Anhidrasas Carbónicas/metabolismo , Sales (Química) , Relación Estructura-Actividad , Antígenos de Neoplasias/metabolismo , Antineoplásicos/química , Cumarinas/química , Guanidinas , Inhibidores de Anhidrasa Carbónica/química , Estructura Molecular
4.
J Enzyme Inhib Med Chem ; 39(1): 2302920, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38221785

RESUMEN

Human DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research. This study assesses the efficacy of three symmetrically substituted carbazole derivatives: 2,7-Di(2-furyl)-9H-carbazole (27a), 3,6-Di(2-furyl)-9H-carbazole (36a), and 3,6-Di(2-thienyl)-9H-carbazole (36b) - as anticancer agents. Among investigated carbazole derivatives, compound 3,6-di(2-furyl)-9H-carbazole bearing two furan moieties emerged as a novel catalytic inhibitor of Topo II. Notably, 3,6-di(2-furyl)-9H-carbazole effectively selectively inhibited the relaxation and decatenation activities of Topo IIα, with minimal effects on the IIß isoform. These findings underscore the potential of compound 3,6-Di(2-furyl)-9H-carbazole as a promising lead candidate warranting further investigation in the realm of anticancer drug development.


Asunto(s)
Antineoplásicos , Inhibidores de Topoisomerasa II , Humanos , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Antineoplásicos/farmacología , Antineoplásicos/química , Carbazoles/farmacología , Carbazoles/química , ADN-Topoisomerasas de Tipo II , Apoptosis
5.
Arch Pharm (Weinheim) ; 357(3): e2300632, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38150663

RESUMEN

Herein, we outline a highly efficient PEG-4000-mediated one-pot three-component reaction for the synthesis of 3-imidazolyl indole clubbed 1,2,3-triazole derivatives (5a-r) at up to 96% yield as antiproliferative agents. This three-component protocol offers the advantages of an environmentally benign reaction, excellent yield, quick response time, and operational simplicity triggered by the copper catalyst under microwave irradiation. All the synthesized compounds were tested for antiproliferative activity against six human solid tumor cell lines, that is, A549 and SW1573 (nonsmall cell lung), HBL100 and T-47D (breast), HeLa (cervix), and WiDr (colon). Among them, six compounds, 5g-j, 5m, and 5p, demonstrated effective antiproliferative action with GI50 values under 10 µM. Furthermore, density functional theory (DFT) calculations were performed for all the synthesized molecules through geometry optimizations, frontier molecular orbital approach, and molecular electrostatic potential (MESP). The theoretical DFT calculation was performed using the DFT/B3LYP/6-31+G (d,p) basis set. Moreover, the biological reactivity of all the representative synthesized molecules was compared with the theoretically calculated quantum chemical descriptors and MESP 3D plots. We also investigated the drug-likeness characteristic and absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction. In general, our approach enables environmentally friendly access to 3-imidazolyl indole clubbed 1,2,3-triazole derivatives as prospective antiproliferative agents.


Asunto(s)
Antineoplásicos , Microondas , Femenino , Humanos , Teoría Funcional de la Densidad , Estudios Prospectivos , Relación Estructura-Actividad , Antineoplásicos/farmacología , Células HeLa , Indoles/farmacología
6.
Beilstein J Org Chem ; 20: 1213-1220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887573

RESUMEN

Considering early-stage drug discovery programs, the Ugi four-component reaction is a valuable, flexible, and pivotal tool, facilitating the creation of two new amide bonds in a one-pot fashion to effectively yield the desired α-aminoacylamides. Here, we highlight the reputation of this reaction approach to access number and scaffold diversity of a library of isatin-based α-acetamide carboxamide oxindole hybrids, promising anticancer agents, in a mild and fast sustainable reaction process. The library was tested against six human solid tumor cell lines, among them, non-small cell lung carcinoma, cervical adenocarcinoma, breast cancer and colon adenocarcinoma. The most potent compounds 8d, 8h and 8k showed GI50 values in the range of 1-10 µM.

7.
Bioorg Med Chem ; 92: 117417, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37531922

RESUMEN

Salirasib, or farnesylthiosalicylic acid (FTS), is a salicylic acid derivative with demonstrated antineoplastic activity. While designed as a competitor of the substrate S-farnesyl cysteine on Ras, it is a potent competitive inhibitor of isoprenylcysteine carboxymethyl transferase. In this study, the antiproliferative activity on six different solid tumor cell lines was evaluated with a series of lipophilic thioether modified salirasib analogues, including those with or without a 1,2,3-triazole linker. A combination of bioassay, cheminformatics, docking, and in silico ADME-Tox was also performed. SAR analysis that analogues with three or more isoprene units or a long aliphatic chain exhibited the most potent activity. Furthermore, three compounds display superior antiproliferative activity than salirasib and similar potency compared to control anticancer drugs across all tested solid tumor cell lines. In addition, the behavior of the collection on migration and invasion, a key process in tumor metastasis, was also studied. Three analogues with specific antimigratory activity were identified with differential structural features being interesting starting points on the development of new antimetastatic agents. The antiproliferative and antimigratory effects observed suggest that modifying the thiol aliphatic/prenyl substituents can modulate the activity.


Asunto(s)
Antineoplásicos , Antineoplásicos/farmacología , Salicilatos/farmacología , Farnesol/farmacología , Línea Celular Tumoral , Proliferación Celular
8.
Bioorg Chem ; 133: 106410, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36822000

RESUMEN

Most of the currently available cytotoxic agents for tackling cancer are devoid of selectivity, thus causing severe side-effects. This situation stimulated us to develop new antiproliferative agents with enhanced affinity towards tumour cells. We focused our attention on novel chalcogen-containing compounds (thiosemicarbazones, disulfides, selenoureas, thio- and selenocyanates), and particularly on selenium derivatives, as it has been documented that this kind of compounds might act as prodrugs releasing selenium-based reactive species on tumour cells. Particularly interesting in terms of potency and selectivity was a pharmacophore comprised by a selenocyanato-alkyl fragment connected to a p-phenylenediamine residue, where the nature of the second amino moiety (free, Boc-protected, enamine-protected) provided a wide variety of antiproliferative activities, ranging from the low micromolar to the nanomolar values. The optimized structure was in turn conjugated through a peptide linkage with biotin (vitamin B7), a cellular growth promoter, whose receptor is overexpressed in numerous cancer cells; the purpose was to develop a selective vector towards malignant cells. Such biotinylated derivative behaved as a very strong antiproliferative agent, achieving GI50 values in the low nM range for most of the tested cancer cells; moreover, it was featured with an outstanding selectivity, with GI50 > 100 µM against human fibroblasts. Mechanistic studies on the mode of inhibition of the biotinylated selenocyanate revealed (Annexin-V assay) a remarkable increase in the number of apoptotic cells compared to the control experiment; moreover, depolarization of the mitochondrial membrane was detected by flow cytometry analysis, and with fluorescent microscopy, what supports the apoptotic cell death. Prior to the apoptotic events, cytostatic effects were observed against SW1573 cells using label-free cell-living imaging; therefore, tumour cell division was prevented. Multidrug resistant cell lines exhibited a reduced sensitivity towards the biotinylated selenocyanate, probably due to its P-gp-mediated efflux. Remarkably, antiproliferative levels could be restored by co-administration with tariquidar, a P-gp inhibitor; this approach can, therefore, overcome multidrug resistance mediated by the P-gp efflux system.


Asunto(s)
Antineoplásicos , Citostáticos , Selenio , Humanos , Citostáticos/farmacología , Línea Celular Tumoral , Selenio/farmacología , Cianatos/farmacología , Apoptosis , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad
9.
Mol Divers ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37935912

RESUMEN

A new and efficient method has been developed to synthesize dispiro[oxindole/acenaphthylenone-benzofuranone]pyrrolidine compounds. This is done by triggering the 1,3-dipolar cycloaddition reaction of azomethine ylides by reacting isatin/acenaphthoquinone with L-picolinic acid/L-proline/sarcosine/L-thioproline/tetrahydroisoquinolines, in a highly regioselective manner in an ionic liquid [DBU][Ac] with 4'-chloro-auron[2-(4-chlorobenzylidene)benzofuran-3(2H)-one]. Single-crystal X-ray diffraction data support the proposed structures of the new compounds. The heterocycles derived from amino acids such as L-picolinic acid, L-proline, and L-thioproline showed significant inhibitory effects against six human solid tumors, including lung, breast, cervix, colon, and others. These new structures were also tested in the active sites of the MDM2 receptor to further study their antiproliferative effects.

10.
J Enzyme Inhib Med Chem ; 38(1): 349-360, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36458374

RESUMEN

The copper-catalysed azide-alkyne cycloaddition was applied to prepare three enantiomeric pairs of heterodimers containing a tacrine residue and a 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) or 1,4-dideoxy-1,4-imino-L-arabinitol (LAB) moiety held together via linkers of variable lengths containing a 1,2,3-triazole ring and 3, 4, or 7 CH2 groups. The heterodimers were tested as inhibitors of butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE). The enantiomeric heterodimers with the longest linkers exhibited the highest inhibition potencies for AChE (IC50 = 9.7 nM and 11 nM) and BuChE (IC50 = 8.1 nM and 9.1 nM). AChE exhibited the highest enantioselectivity (ca. 4-fold). The enantiomeric pairs of the heterodimers were found to be inactive (GI50 > 100 µM), or to have weak antiproliferative properties (GI50 = 84-97 µM) against a panel of human cancer cells.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Humanos , Tacrina/farmacología , Alquinos
11.
Int J Mol Sci ; 24(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298353

RESUMEN

The involvement of carbonic anhydrases (CAs) in a myriad of biological events makes the development of new inhibitors of these metalloenzymes a hot topic in current Medicinal Chemistry. In particular, CA IX and XII are membrane-bound enzymes, responsible for tumour survival and chemoresistance. Herein, a bicyclic carbohydrate-based hydrophilic tail (imidazolidine-2-thione) has been appended to a CA-targeting pharmacophore (arylsulfonamide, coumarin) with the aim of studying the influence of the conformational restriction of the tail on the CA inhibition. For this purpose, the coupling of sulfonamido- or coumarin-based isothiocyanates with reducing 2-aminosugars, followed by the sequential acid-promoted intramolecular cyclization of the corresponding thiourea and dehydration reactions, afforded the corresponding bicyclic imidazoline-2-thiones in good overall yield. The effects of the carbohydrate configuration, the position of the sulfonamido motif on the aryl fragment, and the tether length and substitution pattern on the coumarin were analysed in the in vitro inhibition of human CAs. Regarding sulfonamido-based inhibitors, the best template turned out to be a d-galacto-configured carbohydrate residue, meta-substitution on the aryl moiety (9b), with Ki against CA XII within the low nM range (5.1 nM), and remarkable selectivity indexes (1531 for CA I and 181.9 for CA II); this provided an enhanced profile in terms of potency and selectivity compared to more flexible linear thioureas 1-4 and the drug acetazolamide (AAZ), used herein as a reference compound. For coumarins, the strongest activities were found for substituents devoid of steric hindrance (Me, Cl), and short linkages; derivatives 24h and 24a were found to be the most potent inhibitors against CA IX and XII, respectively (Ki = 6.8, 10.1 nM), and also endowed with outstanding selectivity (Ki > 100 µM against CA I, II, as off-target enzymes). Docking simulations were conducted on 9b and 24h to gain more insight into the key inhibitor-enzyme interactions.


Asunto(s)
Anhidrasas Carbónicas , Neoplasias , Humanos , Estructura Molecular , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Relación Estructura-Actividad , Anhidrasa Carbónica IX/metabolismo , Anhidrasas Carbónicas/metabolismo , Antígenos de Neoplasias , Cumarinas/farmacología , Cumarinas/química , Glicoconjugados , Carbohidratos
12.
J Org Chem ; 87(16): 11000-11006, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35921221

RESUMEN

A direct, catalytic, and complementary method to obtain 2-substituted homoallyl sulfonyl amides is described, starting from sulfonyl amides, aldehydes, and allyltrimethylsilane using iron(III) chloride as a sustainable catalyst. The scope of the process and the reactivity in aza-Prins cyclization is evaluated and supported by density functional theory (DFT) studies. Finally, an evaluation of the antiproliferative activity for this family of sulfonyl amides is also included.


Asunto(s)
Amidas , Hierro , Aldehídos , Catálisis , Ciclización
13.
Bioorg Chem ; 127: 105983, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35779403

RESUMEN

Concerned by the urgent need to explore new approaches for the treatment of Alzheimer's disease, we herein describe the synthesis and evaluation of new multitarget molecules. In particular, we have focused our attention on modulating the activity of cholinesterases (AChE, BuChE) in order to restore the levels of the neurotransmitter acetylcholine, and of O-GlcNAcase (OGA), which is associated with hyperphosphorylation of tau protein, in turn related to the formation of neurofibrillary tangles in the brain. Specifically, we considered the possibility of using carbohydrate-fused 1,3-selenazolines, decorated with a 2-alkylamino or 2-alkoxy moieties. On the one hand, the presence of a selenium atom might be useful in modulating the intrinsic oxidative stress in AD. On the other hand, such bicyclic structure might behave as a transition state analogue of OGA hydrolysis. Moreover, upon protonation, it could mimic the ammonium cation of acetylcholine. The lead compound, bearing a propylamino moiety on C-2 position of the selenazoline motif, proved to be a good candidate against AD; it turned out to be a strong inhibitor of BuChE (IC50 = 0.46 µM), the most prevalent cholinesterase in advanced disease stages, with a roughly 4.8 selectivity index in connection to AChE (IC50 = 2.2 µM). This compound exhibited a roughly 12-fold increase in activity compared to galantamine, one of the currently marketed drugs against AD, and a selective AChE inhibitor, and virtually the same activity as rivastigmine, a selective BuChE inhibitor. Furthermore, it was also endowed with a strong inhibitory activity against human OGA, within the nanomolar range (IC50 = 0.053 µM for hOGA, >100 µM for hHexB), and, thus, with an outstanding selectivity (IC50(hHexB)/IC50(hOGA) > 1887). The title compounds also exhibited an excellent selectivity against a panel of glycosidases and a negligible cytotoxicity against tumor and non-tumor cell lines. Docking simulations performed on the three target enzymes (AChE, BuChE, and OGA) revealed the key interactions to rationalize the biological data.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Colinesterasas , beta-N-Acetilhexosaminidasas , Acetilcolina , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Carbohidratos , Inhibidores de la Colinesterasa/química , Colinesterasas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Nootrópicos/farmacología , Relación Estructura-Actividad , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores
14.
J Enzyme Inhib Med Chem ; 37(1): 2395-2402, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36065944

RESUMEN

The synthesis of four heterodimers in which the copper(I)-catalysed azide-alkyne cycloaddition was employed to connect a 1-deoxynojirimycin moiety with a benzotriazole scaffold is reported. The heterodimers were investigated as inhibitors against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The heterodimers displayed preferential inhibition (> 9) of BuChE over AChE in the micromolar concentration range (IC50 = 7-50 µM). For the most potent inhibitor of BuChE, Cornish-Bowden plots were used, which demonstrated that it behaves as a mixed inhibitor. Modelling studies of the same inhibitor demonstrated that the benzotriazole and 1-deoxynojirimycin moiety is accommodated in the peripheral anionic site and catalytic anionic site, respectively, of AChE. The binding mode to BuChE was different as the benzotriazole moiety is accommodated in the catalytic anionic site.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , 1-Desoxinojirimicina , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Triazoles
15.
J Enzyme Inhib Med Chem ; 37(1): 168-177, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34894971

RESUMEN

We have carried out the design, synthesis, and evaluation of a small library of 2-aminobenzoxazole-appended coumarins as novel inhibitors of tumour-related CAs IX and XII. Substituents on C-3 and/or C-4 positions of the coumarin scaffold, and on the benzoxazole moiety, together with the length of the linker connecting both units were modified to obtain useful structure-activity relationships. CA inhibition studies revealed a good selectivity towards tumour-associated CAs IX and XII (Ki within the mid-nanomolar range in most of the cases) in comparison with CAs I, II, IV, and VII (Ki > 10 µM); CA IX was found to be slightly more sensitive towards structural changes. Docking calculations suggested that the coumarin scaffold might act as a prodrug, binding to the CAs in its hydrolysed form, which is in turn obtained due to the esterase activity of CAs. An increase of the tether length and of the substituents steric hindrance was found to be detrimental to in vitro antiproliferative activities. Incorporation of a chlorine atom on C-3 of the coumarin moiety achieved the strongest antiproliferative agent, with activities within the low micromolar range for the panel of tumour cell lines tested.


Asunto(s)
Antineoplásicos/farmacología , Benzoxazoles/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Cumarinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzoxazoles/síntesis química , Benzoxazoles/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cumarinas/síntesis química , Cumarinas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
16.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35887037

RESUMEN

(1) Background: carbonic anhydrases (CAs) are attractive targets for the development of new anticancer therapies; in particular, CAs IX and XII isoforms are overexpressed in numerous tumors. (2) Methods: following the tail approach, we have appended a hydrophobic aromatic tail to a pharmacophore responsible for the CA inhibition (aryl sulfonamide, coumarin). As a linker, we have used squaramides, featured with strong hydrogen bond acceptor and donor capacities. (3) Results: Starting from easily accessible dimethyl squarate, the title compounds were successfully obtained as crystalline solids, avoiding the use of chromatographic purifications. Interesting and valuable SARs could be obtained upon modification of the length of the hydrocarbon chain, position of the sulfonamido moiety, distance of the aryl sulfonamide scaffold to the squaramide, stereoelectronic effects on the aromatic ring, as well as the number and type of substituents on C-3 and C-4 positions of the coumarin. (4) Conclusions: For sulfonamides, the best profile was achieved for the m-substituted derivative 11 (Ki = 29.4, 9.15 nM, CA IX and XII, respectively), with improved selectivity compared to acetazolamide, a standard drug. Coumarin derivatives afforded an outstanding selectivity (Ki > 10,000 nM for CA I, II); the lead compound (16c) was a strong CA IX and XII inhibitor (Ki = 19.2, 7.23 nM, respectively). Docking simulations revealed the key ligand-enzyme interactions.


Asunto(s)
Neoplasias , Sulfonamidas , Antígenos de Neoplasias/química , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Cumarinas/química , Cumarinas/farmacología , Estructura Molecular , Neoplasias/metabolismo , Quinina/análogos & derivados , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología
17.
Molecules ; 27(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36014500

RESUMEN

Natural products represent an excellent source of unprecedented anticancer compounds. However, the identification of the mechanism of action remains a major challenge. Several techniques and methodologies have been considered, but with limited success. In this work, we explored the combination of live cell imaging and machine learning techniques as a promising tool to depict in a fast and affordable test the mode of action of natural compounds with antiproliferative activity. To develop the model, we selected the non-small cell lung cancer cell line SW1573, which was exposed to the known antimitotic drugs paclitaxel, colchicine and vinblastine. The novelty of our methodology focuses on two main features with the highest relevance, (a) meaningful phenotypic metrics, and (b) fast Fourier transform (FFT) of the time series of the phenotypic parameters into their corresponding amplitudes and phases. The resulting algorithm was able to cluster the microtubule disruptors, and meanwhile showed a negative correlation between paclitaxel and the other treatments. The FFT approach was able to group the samples as efficiently as checking by eye. This methodology could easily scale to group a large amount of data without visual supervision.


Asunto(s)
Antimitóticos , Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antimitóticos/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Humanos , Neoplasias Pulmonares/metabolismo , Microtúbulos/metabolismo , Paclitaxel/metabolismo , Paclitaxel/farmacología , Tubulina (Proteína)/metabolismo
18.
Molecules ; 27(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35209105

RESUMEN

Being aware of the enormous biological potential of organoselenium and polyphenolic compounds, we have accomplished the preparation of novel hybrids, combining both pharmacophores in order to obtain new antioxidant and antiproliferative agents. Three different families have been accessed in a straightforward and chemoselective fashion: carbohydrate-containing N-acylisoselenoureas, N-arylisoselenocarbamates and N-arylselenocarbamates. The nature of the organoselenium framework, number and position of phenolic hydroxyl groups and substituents on the aromatic scaffolds afforded valuable structure-activity relationships for the biological assays accomplished: antioxidant properties (antiradical activity, DNA-protective effects, Glutathione peroxidase (GPx) mimicry) and antiproliferative activity. Regarding the antioxidant activity, selenocarbamates 24-27 behaved as excellent mimetics of GPx in the substoichiometric elimination of H2O2 as a Reactive Oxygen Species (ROS) model. Isoselenocarbamates and particularly their selenocarbamate isomers exhibited potent antiproliferative activity against non-small lung cell lines (A549, SW1573) in the low micromolar range, with similar potency to that shown by the chemotherapeutic agent cisplatin (cis-diaminodichloroplatin, CDDP) and occasionally with more potency than etoposide (VP-16).


Asunto(s)
Desarrollo de Medicamentos , Compuestos de Organoselenio/química , Fenoles/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Química Sintética , Relación Dosis-Respuesta a Droga , Radicales Libres/antagonistas & inhibidores , Humanos , Estructura Molecular , Relación Estructura-Actividad
19.
Molecules ; 27(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35630539

RESUMEN

Cancer is one of the most important causes of death worldwide. Solid tumors represent the vast majority of cancers (>90%), and the chemotherapeutic agents used for their treatment are still characterized by variable efficacy and toxicity. Sesquiterpenes are a group of natural compounds that have shown a wide range of biological activities, including cytotoxic and antiparasitic activity, among others. The antiproliferative activity of natural sesquiterpenes, tessaric acid, ilicic acid, and ilicic alcohol and their semisynthetic derivatives against HeLa, T-47D, WiDr, A549, HBL-100, and SW1573 cell lines were evaluated. The effect of the compounds on Trypanosoma cruzi epimastigotes was also assessed. The selectivity index was calculated using murine splenocytes. Derivatives 13 and 15 were the most antiproliferative compounds, with GI50 values ranging between 5.3 (±0.32) and 14 (±0.90) µM, in all cell lines tested. The presence of 1,2,3-triazole groups in derivatives 15−19 led to improvements in activity compared to those corresponding to the starting natural product (3), with GI50 values ranging between 12 (±1.5) and 17 (±1.1) µM and 16 being the most active compound. In relation to the anti-T. cruzi activity, derivatives 7 and 16 obtained from tessaric acid and ilicic acid were among the most active and selective compounds with IC50 values of 9.3 and 8.8 µM (SI = 8.0 and 9.4), respectively.


Asunto(s)
Antineoplásicos , Sesquiterpenos , Trypanosoma cruzi , Animales , Antineoplásicos/farmacología , Células HeLa , Humanos , Ratones , Sesquiterpenos/farmacología , Relación Estructura-Actividad
20.
Molecules ; 27(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36144833

RESUMEN

In this work, we propose a general methodology to assess the bioactive potential (BP) of extracts in the quest of vegetable-based drugs. To exemplify the method, we studied the anticancer potential (AP) of four endemic species of genus Hypericum (Hypericum canariense L, Hypericum glandulosum Aiton, Hypericum grandifolium Choisy and Hypericum reflexum L.f) from the Canary Islands. Microextracts were obtained from the aerial parts of these species and were tested against six human tumor cell lines, A549 (non-small-cell lung), HBL-100 (breast), HeLa (cervix), SW1573 (non-small-cell lung), T-47D (breast) and WiDr (colon). The methanol-water microextracts were evaluated further for cell migration, autophagy and cell death. The most promising bioactive polar microextracts were analyzed by UHPLC-DAD-MS. The extraction yield, the bioactivity evaluation and the chemical profiling by LC-MS suggested that H. grandifolium was the species with the highest AP. Label-free live-cell imaging studies on HeLa cells exposed to the methanol-water microextract of H. grandifolium enabled observing cell death and several apoptotic hallmarks. Overall, this study allows us to select Hypericum grandifolium Choisy as a source of new chemical entities with a potential interest for cancer treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Hypericum , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Femenino , Células HeLa , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Metanol , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , España , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA