Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell Proteomics ; 21(11): 100421, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36182101

RESUMEN

Helicobacter pylori colonizes the stomach of half of the human population. Most H. pylori are located in the mucus layer, which is mainly comprised by glycosylated mucins. Using mass spectrometry, we identified 631 glycans (whereof 145 were fully characterized and the remainder assigned as compositions) on mucins isolated from 14 Helicobacter spp.-infected and 14 Helicobacter spp.-noninfected stomachs. Only six identified glycans were common to all individuals, from a total of 60 to 189 glycans in each individual. An increased number of unique glycan structures together with an increased intraindividual diversity and larger interindividual variation were identified among O-glycans from Helicobacter spp.-infected stomachs compared with noninfected stomachs. H. pylori strain J99, which carries the blood group antigen-binding adhesin (BabA), the sialic acid-binding adhesin (SabA), and the LacdiNAc-binding adhesin, bound both to Lewis b (Leb)-positive and Leb-negative mucins. Among Leb-positive mucins, H. pylori J99 binding was higher to mucins from Helicobacter spp.-infected individuals than noninfected individuals. Statistical correlation analysis, binding experiments with J99 wt, and J99ΔbabAΔsabA and inhibition experiments using synthetic glycoconjugates demonstrated that the differences in H. pylori-binding ability among these four groups were governed by BabA-dependent binding to fucosylated structures. LacdiNAc levels were lower in mucins that bound to J99 lacking BabA and SabA than in mucins that did not, suggesting that LacdiNAc did not significantly contribute to the binding. We identified 24 O-glycans from Leb-negative mucins that correlated well with H. pylori binding whereof 23 contained α1,2-linked fucosylation. The large and diverse gastric glycan library identified, including structures that correlated with H. pylori binding, could be used to select glycodeterminants to experimentally investigate further for their importance in host-pathogen interactions and as candidates to develop glycan-based therapies.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Mucinas Gástricas/metabolismo , Mucosa Gástrica/metabolismo , Helicobacter pylori/metabolismo , Polisacáridos/metabolismo
2.
Glycobiology ; 32(1): 6-10, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-34420054

RESUMEN

Sulfomucins are in some body locations and species a normal occurrence, whereas in other situations, are a sign of pathology. Sulfomucin content on histological sections and isolated material is frequently analyzed with Alcian blue staining at pH 1.0. However, since the stain detects the charge, a high density of other charged molecules, such as sialic acids, has potential to impede specificity. Here, we compared the outcome from four staining protocols with the level of sulfation determined by liquid chromatography-tandem mass spectrometric analysis on samples from various tissues with variable sulfation and sialylation levels. We found that a protocol we designed, including rinsing with MetOH and 0.5 M NaCl buffer at pH 1.0, eliminates the false positive staining of tissues outperforming commonly recommended solutions. In tissues with low-to-moderately sulfated mucins (e.g. human stomach and salmonid epithelia), this method enables accurate relative quantification (e.g. sulfate scoring comparisons between healthy and diseased tissues), whereas the range of the method is not suitable for comparisons between tissues with high sulfomucin content (e.g. pig stomach and colon).


Asunto(s)
Mucinas , Azul Alcián , Animales , Concentración de Iones de Hidrógeno , Sialomucinas/análisis , Coloración y Etiquetado , Porcinos
3.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35457143

RESUMEN

One of the most important bacterial diseases in salmonid aquaculture is furunculosis, caused by Aeromonas salmonicida. Bacterial communication through secreted autoinducer signals, quorum sensing, takes part in the regulation of gene expression in bacteria, influencing growth and virulence. The skin and mucosal surfaces, covered by a mucus layer, are the first point of contact between fish and bacteria. Mucins are highly glycosylated and are the main components of mucus. Here, we validate the Vibrio harveyi BB170 bioreporter assay for quantifying A. salmonicida quorum sensing and study the effects of Atlantic salmon mucins as well as mono- and disaccharides on the AI-2 levels of A. salmonicida. Atlantic salmon mucins from skin, pyloric ceca, proximal and distal intestine reduced A. salmonicida AI-2 levels. Among the saccharides abundant on mucins, fucose, N-acetylneuraminic acid and GlcNAcß1-3Gal inhibited AI-2 A. salmonicida secretion. Removal of N-acetylneuraminic acid, which is the most abundant terminal residue on mucin glycans on Atlantic salmon mucins, attenuated the inhibitory effects on AI-2 levels of A. salmonicida. Deletion of A. salmonicida luxS abolished AI-2 production. In conclusion, Atlantic salmon mucins regulate A. salmonicida quorum sensing in a luxS and N-acetylneuraminic acid-dependent manner.


Asunto(s)
Aeromonas salmonicida , Salmo salar , Aeromonas salmonicida/metabolismo , Animales , Proteínas Bacterianas/genética , Mucinas/metabolismo , Ácido N-Acetilneuramínico , Percepción de Quorum , Salmo salar/metabolismo
4.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540792

RESUMEN

The skin barrier consists of mucus, primarily comprising highly glycosylated mucins, and the epithelium. Host mucin glycosylation governs interactions with pathogens and stress is associated with impaired epithelial barrier function. We characterized Atlantic salmon skin barrier function during chronic stress (high density) and mucin O-glycosylation changes in response to acute and chronic stress. Fish held at low (LD: 14-30 kg/m3) and high densities (HD: 50-80 kg/m3) were subjected to acute stress 24 h before sampling at 17 and 21 weeks after start of the experiment. Blood parameters indicated primary and secondary stress responses at both sampling points. At the second sampling, skin barrier function towards molecules was reduced in the HD compared to the LD group (Papp mannitol; p < 0.01). Liquid chromatography-mass spectrometry revealed 81 O-glycan structures from the skin. Fish subjected to both chronic and acute stress had an increased proportion of large O-glycan structures. Overall, four of the O-glycan changes have potential as indicators of stress, especially for the combined chronic and acute stress. Stress thus impairs skin barrier function and induces glycosylation changes, which have potential to both affect interactions with pathogens and serve as stress indicators.


Asunto(s)
Aglomeración , Mucinas/metabolismo , Moco/química , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Salmo salar/metabolismo , Absorción Cutánea/fisiología , Piel/metabolismo , Estrés Fisiológico/fisiología , Estrés Psicológico/metabolismo , Animales , Biomarcadores , Cromatografía Liquida , Aglomeración/psicología , Glicosilación , Hidrocortisona/sangre , Manitol/farmacocinética , Espectrometría de Masas , Mucinas/aislamiento & purificación , Moco/metabolismo , Ácido N-Acetilneuramínico/aislamiento & purificación , Oxígeno/análisis , Polisacáridos/aislamiento & purificación , Procesamiento Proteico-Postraduccional , Salmo salar/sangre , Piel/ultraestructura , Temperatura , Calidad del Agua
5.
Infect Immun ; 85(8)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28533470

RESUMEN

Aeromonas salmonicida causes furunculosis in salmonids and is a threat to Atlantic salmon aquaculture. The epithelial surfaces that the pathogen colonizes are covered by a mucus layer predominantly comprised of secreted mucins. By using mass spectrometry to identify mucin glycan structures with and without enzymatic removal of glycan residues, coupled to measurements of bacterial growth, we show here that the complex Atlantic salmon intestinal mucin glycans enhance A. salmonicida growth, whereas the more simple skin mucin glycans do not. Of the glycan residues present terminally on the salmon mucins, only N-acetylglucosamine (GlcNAc) enhances growth. Sialic acids, which have an abundance of 75% among terminal glycans from skin and of <50% among intestinal glycans, cannot be removed or used by A. salmonicida for growth-enhancing purposes, and they shield internal GlcNAc from utilization. A Ca2+ concentration above 0.1 mM is needed for A. salmonicida to be able to utilize mucins for growth-promoting purposes, and 10 mM further enhances both A. salmonicida growth in response to mucins and binding of the bacterium to mucins. In conclusion, GlcNAc and sialic acids are important determinants of the A. salmonicida interaction with its host at the mucosal surface. Furthermore, since the mucin glycan repertoire affects pathogen growth, the glycan repertoire may be a factor to take into account during breeding and selection of strains for aquaculture.


Asunto(s)
Acetilglucosamina/metabolismo , Aeromonas salmonicida/crecimiento & desarrollo , Calcio/metabolismo , Mucinas/metabolismo , Polisacáridos/química , Salmo salar/metabolismo , Ácidos Siálicos/metabolismo , Aeromonas salmonicida/patogenicidad , Aeromonas salmonicida/fisiología , Animales , Acuicultura , Forunculosis/microbiología , Glicosilación , Hexosaminas/química , Intestinos/química , Espectrometría de Masas , Mucinas/química , Polisacáridos/metabolismo , Piel/química
6.
J Proteome Res ; 14(8): 3239-51, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26066491

RESUMEN

Aquaculture is a growing industry, increasing the need for understanding host-pathogen interactions in fish. The skin and mucosal surfaces, covered by a mucus layer composed of mucins, is the first point of contact between fish and pathogens. Highly O-glycosylated mucins have been shown to be an important part of the defense against pathogens, and pathogens bind to host surfaces using lectin-like adhesins. However, knowledge of piscine O-glycosylation is very limited. We characterized mucin O-glycosylation of five freshwater acclimated Atlantic salmon, using mass spectrometry. Of the 109 O-glycans found, most were sialylated and differed in distribution among skin, pyloric ceca, and proximal and distal intestine. Skin O-glycans were shorter (2-6 residues) and less diverse (33 structures) than intestinal O-glycans (2-13 residues, 93 structures). Skin mucins carried O-glycan cores 1, 2, 3, and 5 and three types of sialic acids (Neu5Ac, Neu5Gc, and Kdn) and had sialyl-Tn as the predominant structure. Intestinal mucins carried only cores 1, 2, and 5, Neu5Ac was the only sialic acid present, and sialylated core 5 was the most dominant structure. This structural characterization can be used for identifying structures of putative importance in host-pathogen interactions for further testing in biological assays and disease intervention therapies.


Asunto(s)
Proteínas de Peces/metabolismo , Tracto Gastrointestinal/metabolismo , Mucinas/metabolismo , Polisacáridos/metabolismo , Salmo salar/metabolismo , Piel/metabolismo , Animales , Secuencia de Carbohidratos , Cromatografía Liquida , Fucosa/química , Fucosa/metabolismo , Glicómica/métodos , Glicosilación , Datos de Secuencia Molecular , Mucinas/química , Neuraminidasa/metabolismo , Especificidad de Órganos , Polisacáridos/química , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Espectrometría de Masas en Tándem
8.
PLoS One ; 14(5): e0215583, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31125340

RESUMEN

Disease outbreaks are limiting factors for an ethical and economically sustainable aquaculture industry. The first point of contact between a pathogen and a host occurs in the mucus, which covers the epithelial surfaces of the skin, gills and gastrointestinal tract. Increased knowledge on host-pathogen interactions at these primary barriers may contribute to development of disease prevention strategies. The mucus layer is built of highly glycosylated mucins, and mucin glycosylation differs between these epithelial sites. We have previously shown that A. salmonicida binds to Atlantic salmon mucins. Here we demonstrate binding of four additional bacteria, A. hydrophila, V. harveyi, M. viscosa and Y. ruckeri, to mucins from Atlantic salmon and Arctic char. No specific binding could be observed for V. salmonicida to any of the mucin groups. Mucin binding avidity was highest for A. hydrophila and A. salmonicida, followed by V. harveyi, M. viscosa and Y. ruckeri in decreasing order. Four of the pathogens showed highest binding to either gills or intestinal mucins, whereas none of the pathogens had preference for binding to skin mucins. Fluid velocity enhanced binding of intestinal mucins to A. hydrophila and A. salmonicida at 1.5 and 2 cm/s, whereas a velocity of 2 cm/s for skin mucins increased binding of A. salmonicida and decreased binding of A. hydrophila. Binding avidity, specificity and the effect of fluid velocity on binding thus differ between salmonid pathogens and with mucin origin. The results are in line with a model where the short skin mucin glycans contribute to contact with pathogens whereas pathogen binding to mucins with complex glycans aid the removal of pathogens from internal epithelial surfaces.


Asunto(s)
Bacterias Gramnegativas/metabolismo , Mucinas/metabolismo , Salmo salar/microbiología , Trucha/microbiología , Aeromonas hydrophila/metabolismo , Aliivibrio salmonicida/metabolismo , Animales , Proteínas de Peces/metabolismo , Moritella/metabolismo , Salmo salar/metabolismo , Especificidad de la Especie , Trucha/metabolismo , Vibrio/metabolismo , Yersinia ruckeri/metabolismo
9.
Biosens Bioelectron ; 146: 111736, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31586762

RESUMEN

Knowledge on host-pathogen interactions contributes to the development of approaches to alleviate infectious disease. In this work, we developed a surface plasmon resonance (SPR) based method for investigating bacteria/mucins interactions. Furthermore, we investigated adhesion of three pathogens, Aeromonas salmonicida, Aeromonas hydrophila and Vibrio harveyi, to Atlantic salmon mucins isolated from different epithelial sites, using SPR and microtiter-based binding assays. We demonstrated that performing bacterial binding assays to mucins using SPR is feasible and has advantages over microtiter-based binding assays, especially under flow conditions. The fluid flow in the SPR is linear and continuous and SPR enables real-time reading of mucin-bacterial bonds, which provides an in vivo-like setup for analysis of bacterial binding to mucins. The variation between technical replicates was smaller using SPR detection compared to the adenosine 5'-triphosphate (ATP) bioluminescence assay in microtiter plates. Furthermore, we demonstrated that the effect of flow on pathogen-mucin interaction is significant and that bacterial adhesion differ non-linearly with flow rates and depend on the epithelial source of the mucin.


Asunto(s)
Infecciones Bacterianas/veterinaria , Enfermedades de los Peces/microbiología , Proteínas de Peces/metabolismo , Mucinas/metabolismo , Salmo salar/microbiología , Animales , Infecciones Bacterianas/metabolismo , Enfermedades de los Peces/metabolismo , Unión Proteica , Salmo salar/metabolismo , Resonancia por Plasmón de Superficie/métodos
10.
Genes (Basel) ; 10(7)2019 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-31284681

RESUMEN

Norway is the largest producer and exporter of farmed Atlantic salmon (Salmo salar) worldwide. Skin disorders correlated with bacterial infections represent an important challenge for fish farmers due to the economic losses caused. Little is known about this topic, thus studying the skin-mucus of Salmo salar and its bacterial community depict a step forward in understanding fish welfare in aquaculture. In this study, we used label free quantitative mass spectrometry to investigate the skin-mucus proteins associated with both Atlantic salmon and bacteria. In particular, the microbial temporal proteome dynamics during nine days of mucus incubation with sterilized seawater was investigated, in order to evaluate their capacity to utilize mucus components for growth in this environment. At the start of the incubation period, the largest proportion of proteins (~99%) belonged to the salmon and many of these proteins were assigned to protecting functions, confirming the defensive role of mucus. On the contrary, after nine days of incubation, most of the proteins detected were assigned to bacteria, mainly to the genera Vibrio and Pseudoalteromonas. Most of the predicted secreted proteins were affiliated with transport and metabolic processes. In particular, a large abundance and variety of bacterial proteases were observed, highlighting the capacity of bacteria to degrade the skin-mucus proteins of Atlantic salmon.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Peces/genética , Moco , Proteoma , Salmo salar , Piel , Animales , Acuicultura , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Peces/metabolismo , Mucinas/metabolismo , Moco/metabolismo , Moco/microbiología , ARN Ribosómico 16S , Salmo salar/metabolismo , Salmo salar/microbiología , Piel/metabolismo , Piel/microbiología
11.
Microorganisms ; 6(2)2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29912166

RESUMEN

Gastrointestinal infections cause significant challenges and economic losses in animal husbandry. As pathogens becoming resistant to antibiotics are a growing concern worldwide, alternative strategies to treat infections in farmed animals are necessary in order to decrease the risk to human health and increase animal health and productivity. Mucosal surfaces are the most common route used by pathogens to enter the body. The mucosal surface that lines the gastrointestinal tract is covered by a continuously secreted mucus layer that protects the epithelial surface. The mucus layer is the first barrier the pathogen must overcome for successful colonization, and is mainly composed of densely glycosylated proteins called mucins. The vast array of carbohydrate structures present on the mucins provide an important setting for host-pathogen interactions. This review summarizes the current knowledge on gastrointestinal mucins and their role during infections in farmed animals. We examine the interactions between mucins and animal pathogens, with a focus on how pathogenic bacteria can modify the mucin environment in the gut, and how this in turn affects pathogen adhesion and growth. Finally, we discuss analytical challenges and complexities of the mucus-based defense, as well as its potential to control infections in farmed animals.

12.
Virulence ; 9(1): 898-918, 2018 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-29638186

RESUMEN

Helicobacter suis colonizes the stomach of most pigs and is the most prevalent non-Helicobacter pylori Helicobacter species found in the human stomach. In the human host, H. suis contributes to the development of chronic gastritis, peptic ulcer disease and MALT lymphoma, whereas in pigs it is associated with gastritis, decreased growth and ulcers. Here, we demonstrate that the level of H. pylori and H. suis binding to human and pig gastric mucins varies between individuals with species dependent specificity. The binding optimum of H. pylori is at neutral pH whereas that of H. suis has an acidic pH optimum, and the mucins that H. pylori bind to are different than those that H. suis bind to. Mass spectrometric analysis of mucin O-glycans from the porcine mucin showed that individual variation in binding is reflected by a difference in glycosylation; of 109 oligosaccharide structures identified, only 14 were present in all examined samples. H. suis binding to mucins correlated with glycans containing sulfate, sialic acid and terminal galactose. Among the glycolipids present in pig stomach, binding to lactotetraosylceramide (Galß3GlcNAcß3Galß4Glcß1Cer) was identified, and adhesion to Galß3GlcNAcß3Galß4Glc at both acidic and neutral pH was confirmed using other glycoconjugates. Together with that H. suis bound to DNA (used as a proxy for acidic charge), we conclude that H. suis has two binding modes: one to glycans terminating with Galß3GlcNAc, and one to negatively charged structures. Identification of the glycan structures H. suis interacts with can contribute to development of therapeutic strategies alternative to antibiotics.


Asunto(s)
Mucinas Gástricas/metabolismo , Glucolípidos/metabolismo , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/veterinaria , Helicobacter heilmannii/metabolismo , Polisacáridos/metabolismo , Enfermedades de los Porcinos/metabolismo , Animales , Mucosa Gástrica/metabolismo , Glicosilación , Infecciones por Helicobacter/metabolismo , Helicobacter heilmannii/genética , Humanos , Estómago/microbiología , Porcinos , Enfermedades de los Porcinos/microbiología
13.
Neuropeptides ; 46(5): 203-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22863535

RESUMEN

Obesity is a major risk factor in numerous diseases, in which elevated intracellular Ca(2+) plays a major role in increased adiposity. We examined the difference between Ca(2+) signals in monocytes of lean and overweight subjects and the relationship between leptin induced NADPH oxidase activation and intracellular calcium concentration [Ca(2+)](i) homeostasis. Our results are as follows: (1) The basal level of [Ca(2+)](i) in resting monocytes of overweight subjects (OW monocytes) was higher than that in control cells, whereas the leptin-induced peak of the Ca(2+) signal was lower and the return to basal level was delayed. (2) Ca(2+) signals were more pronounced in OW monocytes than in control cells. (3) Using different inhibitors of cellular signaling, we found that in control cells the Ca(2+) signals originated from intracellular pools, whereas in OW cells they were generated predominantly by Ca(2+)-influx from medium. Finally, we found correlation between leptin induced superoxide anion generation and Ca(2+) signals. The disturbed [Ca(2+)](i) homeostasis in OW monocytes was fully restored in the presence of fluvastatin. Statins have pleiotropic effects involving the inhibition of free radical generation that may account for its beneficial effect on elevated [Ca(2+)](i) and consequently on the pathomechanism of obesity.


Asunto(s)
Calcio/metabolismo , Homeostasis/efectos de los fármacos , Leptina/farmacología , Monocitos/efectos de los fármacos , Sobrepeso/metabolismo , Adulto , Señalización del Calcio/efectos de los fármacos , Homeostasis/fisiología , Humanos , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , NADPH Oxidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA