Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nano Lett ; 23(5): 1637-1644, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36852434

RESUMEN

Perovskite gain materials can sustain continuous-wave lasing at room-temperature. A first step toward the unachieved goal of electrically excited lasing would be an improvement in gain when electrical stimulation is added to the optical. However, to date, electrical stimulation supplementing optical has reduced gain performance. We find that amplified spontaneous emission (ASE) in a CsPbBr3 perovskite light-emitting diode (LED) held under invariant subthreshold optical excitation can be turned on/off by the addition/removal of an electric field. A positive bias voltage leads to a factor of 3 reduction in the optical ASE threshold, the cause of which can be attributed to an enhancement of the radiative rate. The slow components (10 s time scale) of the modulation in the photoluminescence and ASE when the voltage is changed suggest that the relocation of mobile ions trigger the increased radiative rate and observed lowering of ASE thresholds.

2.
Opt Express ; 30(9): 14172-14188, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35473167

RESUMEN

Recent advances in solution processing of micrometer-thick perovskite solar cells over textured silicon bottom solar cells allowed a new promising approach for the fabrication of 2T perovskite/silicon tandem photovoltaics, combining optimal light management in the textured bottom cell with the ease of solution processing. Detailed simulations are needed to assess the performances of this morphology configuration (thick perovskite configuration). In this work, in-depth optical and energy yield (EY) simulations are performed to compare the thick perovskite configuration with other relevant morphology configurations for 2T perovskite/silicon tandem photovoltaics. Under standard test conditions, the total photogenerated current of the thick perovskite configuration is 1.3 mA cm-2 lower (-3.4% relative) than the one of the conformal perovskite on textured silicon configuration for non-encapsulated cells and only 0.8 mA cm-2 (-2.1% relative) for encapsulated cells. Under realistic outdoor conditions, EY modelling for a wide range of locations shows that, while conformal perovskite on textured silicon configuration remains the optimal configuration, thick perovskite configuration exhibits a mere ∼2.5% lower annual EY. Finally, intermediate scenarios are investigated with the angle of the perovskite front-side texture differing from the silicon texture and critical angles for efficient light management in these configurations are identified.

3.
Opt Express ; 29(21): 34494-34509, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809238

RESUMEN

While various nanophotonic structures applicable to relatively thin crystalline silicon-based solar cells were proposed to ensure effective light in-coupling and light trapping in the absorber, it is of great importance to evaluate their performance on the solar module level under realistic irradiation conditions. Here, we analyze the annual energy yield of relatively thin (crystalline silicon (c-Si) wafer thickness between 5 µm and 80 µm) heterojunction (HJT) solar module architectures when optimized anti-reflective and light trapping titanium dioxide (TiO2) nanodisk square arrays are applied on the front and rear cell interfaces, respectively. Our numerical study shows that upon reducing c-Si wafer thickness down to 5 µm, the relative increase of the annual energy yield can go up to 23.3 %rel and 43.0 %rel for mono- and bifacial solar modules, respectively, when compared to the reference modules with flat optimized anti-reflective coatings of HJT solar cells.

4.
Opt Express ; 28(25): 37986-37995, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33379621

RESUMEN

A limiting factor in organic solar cells (OSCs) is the incomplete absorption in the thin absorber layer. One concept to enhance absorption is to apply an optical cavity design. In this study, the performance of an OSC with cavity is evaluated. By means of a comprehensive energy yield (EY) model, the improvement is demonstrated by applying realistic sky irradiance, covering a wide range of incidence angles. The relative enhancement in EY for different locations is found to be 11-14% compared to the reference device with an indium tin oxide front electrode. The study highlights the improved angular light absorption as well as the angular robustness of an OSC with cavity.

5.
Opt Express ; 28(6): 8878-8897, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32225505

RESUMEN

The rise in the power conversion efficiency (PCE) of perovskite solar cells has triggered enormous interest in perovskite-based tandem photovoltaics. One key challenge is to achieve high transmission of low energy photons into the bottom cell. Here, nanostructured front electrodes for 4-terminal perovskite/crystalline-silicon (perovskite/c-Si) tandem solar cells are developed by conformal deposition of indium tin oxide (ITO) on self-assembled polystyrene nanopillars. The nanostructured ITO is optimized for reduced reflection and increased transmission with a tradeoff in increased sheet resistance. In the optimum case, the nanostructured ITO electrodes enhance the transmittance by ∼7% (relative) compared to planar references. Perovskite/c-Si tandem devices with nanostructured ITO exhibit enhanced short-circuit current density (2.9 mA/cm2 absolute) and PCE (1.7% absolute) in the bottom c-Si solar cell compared to the reference. The improved light in-coupling is more pronounced for elevated angle of incidence. Energy yield enhancement up to ∼10% (relative) is achieved for perovskite/c-Si tandem architecture with the nanostructured ITO electrodes. It is also shown that these nanostructured ITO electrodes are also compatible with various other perovskite-based tandem architectures and bear the potential to improve the PCE up to 27.0%.

6.
Opt Express ; 27(8): A507-A523, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31052923

RESUMEN

Energy yield (EY) modelling is an indispensable tool to minimize payback time of emerging perovskite-based multi-junction photovoltaics (PV) but it relies on many assumptions about device architecture and environmental conditions. Here, we propose a comprehensive framework that enables rapid simulation of complex architectures of perovskite-based multi-junction PV and detailed calculation of their power output under realistic irradiation conditions in various climatic zones. Applying the framework to perovskite/silicon multi-junction solar modules, we showcase the impact of tracking on energy losses arising from spectral variations. Moreover, we demonstrate the strong dependency of the EY of bifacial multi-junction solar modules on the albedo.

7.
Opt Lett ; 44(1): 29-32, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30645537

RESUMEN

The refractive indices of photoresists used for direct laser writing (DLW) have been determined after exposure to ultraviolet (UV) light. However, it was anticipated that the refractive index will differ when applying a two-photon polymerization (TPP) process. In this Letter, we demonstrate that this is indeed the case. Making use of a guided mode coupling approach, we measure the dispersive real part of the refractive index (n) of a commercial photoresist (IP-Dip, Nanoscribe) at very high accuracy. Additionally, the imaginary part of the refractive index (k) is determined from absorption measurements for wavelengths in the range 300 to 1700 nm. TPP layers exhibit a significantly lower refractive index than their UV exposed bulk counterparts (Δn up to 0.01). Furthermore, when fabricating a TPP shell and UV exposing the interior, the refractive index of the shell will not change. This is an important consideration for optical component design and opens the possibility for low refractive index difference wave guiding.

8.
Opt Express ; 26(2): A144-A152, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29401904

RESUMEN

We report on digitally printed distributed feedback lasers on flexible polyethylene terephthalate substrates based on methylammonium lead iodide perovskite gain material. The perovskite lasers are printed with a digital drop-on-demand inkjet printer, providing full freedom in the shape and design of the gain layer. We show that adjusting the perovskite ink increases the potential processing window and decreases the surface roughness of the active layer to less than 7 nm, which is essential for low lasing thresholds. Prototype inkjet-printed perovskite lasers processed on top of nanopatterned rigid as well as flexible substrates are demonstrated. Optimized perovskite gain layers printed on PET substrates demonstrated lasing and showed a linewidth of 0.4 nm and a lasing threshold of 270 kW/cm2. In addition, printing of a distinct shape shows a high level of uniformity, demonstrated by a low spatial resolved full width half maximum variation over the whole printing area. These results reveal the possibilities of digital printed perovskite layers towards large-scale and low-cost laser applications of arbitrary shape.

9.
Prog Photovolt ; 24(5): 623-633, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27667911

RESUMEN

We present a universally applicable 3D-printed external light trap for enhanced absorption in solar cells. The macroscopic external light trap is placed at the sun-facing surface of the solar cell and retro-reflects the light that would otherwise escape. The light trap consists of a reflective parabolic concentrator placed on top of a reflective cage. Upon placement of the light trap, an improvement of 15% of both the photocurrent and the power conversion efficiency in a thin-film nanocrystalline silicon (nc-Si:H) solar cell is measured. The trapped light traverses the solar cell several times within the reflective cage thereby increasing the total absorption in the cell. Consequently, the trap reduces optical losses and enhances the absorption over the entire spectrum. The components of the light trap are 3D printed and made of smoothened, silver-coated thermoplastic. In contrast to conventional light trapping methods, external light trapping leaves the material quality and the electrical properties of the solar cell unaffected. To explain the theoretical operation of the external light trap, we introduce a model that predicts the absorption enhancement in the solar cell by the external light trap. The corresponding calculated path length enhancement shows good agreement with the empirically derived value from the opto-electrical data of the solar cell. Moreover, we analyze the influence of the angle of incidence on the parasitic absorptance to obtain full understanding of the trap performance. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.

10.
Opt Express ; 23(24): A1575-88, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26698805

RESUMEN

The angular dependence of light-trapping in nanophotonic thin-film solar cells is inherent due to the wavelength-scale dimensions of the periodic nanopatterns. In this paper, we experimentally investigate the dependence of light coupling to waveguide modes for light trapping in a-Si:H solar cells deposited on nanopatterned back contacts. First, we accurately determine the spectral positions of individual waveguide modes in thin-film solar cells in external quantum efficiency and absorptance. Second, we demonstrate the strong angular dependence of this spectral position for our solar cells. Third, a moderate level of disorder is introduced to the initially periodic nanopattern of the back contacts. As a result, the angular dependence is reduced. Last, we experimentally compare this dependence on the angle of incidence for randomly textured, 2D periodically nanopatterned and 2D disordered back contacts in external quantum efficiency and short-circuit current density.

11.
Nano Lett ; 14(11): 6599-605, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25350265

RESUMEN

Nanophotonic light management concepts are on the way to advance photovoltaic technologies and accelerate their economical breakthrough. Most of these concepts make use of the coupling of incident sunlight to waveguide modes via nanophotonic structures such as photonic crystals, nanowires, or plasmonic gratings. Experimentally, light coupling to these modes was so far exclusively investigated with indirect and macroscopic methods, and thus, the nanoscale physics of light coupling and propagation of waveguide modes remain vague. In this contribution, we present a nanoscopic observation of light coupling to waveguide modes in a nanophotonic thin-film silicon solar cell. Making use of the subwavelength resolution of the scanning near-field optical microscopy, we resolve the electric field intensities of a propagating waveguide mode at the surface of a state-of-the-art nanophotonic thin-film solar cell. We identify the resonance condition for light coupling to this individual waveguide mode and associate it to a pronounced resonance in the external quantum efficiency that is found to increase significantly the power conversion efficiency of the device. We show that a maximum of the incident light couples to the investigated waveguide mode if the period of the electric field intensity of the waveguide mode matches the periodicity of the nanophotonic two-dimensional grating. Our novel experimental approach establishes experimental access to the local analysis of light coupling to waveguide modes in a number of optoelectronic devices concerned with nanophotonic light-trapping as well as nanophotonic light emission.

12.
Opt Express ; 22 Suppl 5: A1270-7, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25322181

RESUMEN

Thin-film silicon tandem solar cells are composed of an amorphous silicon top cell and a microcrystalline silicon bottom cell, stacked and connected in series. In order to match the photocurrents of the top cell and the bottom cell, a proper photon management is required. Up to date, single-layer intermediate reflectors of limited spectral selectivity are applied to match the photocurrents of the top and the bottom cell. In this paper, we design and prototype multilayer intermediate reflectors based on aluminum doped zinc oxide and doped microcrystalline silicon oxide with a spectrally selective reflectance allowing for improved current matching and an overall increase of the charge carrier generation. The intermediate reflectors are successfully integrated into state-of-the-art tandem solar cells resulting in an increase of overall short-circuit current density by 0.7 mA/cm(2) in comparison to a tandem solar cell with the standard single-layer intermediate reflector.

13.
Adv Sci (Weinh) ; 11(14): e2308901, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308172

RESUMEN

Hybrid perovskite photovoltaics (PVs) promise cost-effective fabrication with large-scale solution-based manufacturing processes as well as high power conversion efficiencies. Almost all of today's high-performance solution-processed perovskite absorber films rely on so-called quenching techniques that rapidly increase supersaturation to induce a prompt crystallization. However, to date, there are no metrics for comparing results obtained with different quenching methods. In response, the first quantitative modeling framework for gas quenching, anti-solvent quenching, and vacuum quenching is developed herein. Based on dynamic thickness measurements in a vacuum chamber, previous works on drying dynamics, and commonly known material properties, a detailed analysis of mass transfer dynamics is performed for each quenching technique. The derived models are delivered along with an open-source software framework that is modular and extensible. Thereby, a deep understanding of the impact of each process parameter on mass transfer dynamics is provided. Moreover, the supersaturation rate at critical concentration is proposed as a decisive benchmark of quenching effectiveness, yielding ≈ 10-3 - 10-1s-1 for vacuum quenching, ≈ 10-5 - 10-3s-1 for static gas quenching, ≈ 10-2 - 100s-1 for dynamic gas quenching and ≈ 102s-1 for antisolvent quenching. This benchmark fosters transferability and scalability of hybrid perovskite fabrication, transforming the "art of device making" to well-defined process engineering.

14.
Adv Mater ; 36(7): e2307160, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37904613

RESUMEN

Large-area processing of perovskite semiconductor thin-films is complex and evokes unexplained variance in quality, posing a major hurdle for the commercialization of perovskite photovoltaics. Advances in scalable fabrication processes are currently limited to gradual and arbitrary trial-and-error procedures. While the in situ acquisition of photoluminescence (PL) videos has the potential to reveal important variations in the thin-film formation process, the high dimensionality of the data quickly surpasses the limits of human analysis. In response, this study leverages deep learning (DL) and explainable artificial intelligence (XAI) to discover relationships between sensor information acquired during the perovskite thin-film formation process and the resulting solar cell performance indicators, while rendering these relationships humanly understandable. The study further shows how gained insights can be distilled into actionable recommendations for perovskite thin-film processing, advancing toward industrial-scale solar cell manufacturing. This study demonstrates that XAI methods will play a critical role in accelerating energy materials science.

15.
ACS Appl Mater Interfaces ; 16(21): 27450-27462, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38751205

RESUMEN

The long-term stability of perovskite solar cells (PSCs) remains a bottleneck for commercialization. While studies on the stoichiometry and morphology of PSCs with regard to performance are prevalent, understanding the influence of these factors on their long-term stability is lacking. In this work, we evaluate the impact of stoichiometry and morphology on the long-term stability of cesium formamidinium-based PSCs. We demonstrate that the lead iodide (PbI2) to formamidinium iodide (FAI) ratio influences stability under various stress factors (elevated temperature and light). A high molar ratio (PbI2/FAI > 1.1) in the perovskite precursor displays drastic degradation under ISOS-L1 (100 mW/cm2, 25 °C, maximum power point tracking) conditions. However, postdegradation analysis contradicts these results. Devices with PbI2/FAI ≤ 1.1 are stable under light, but intermittent current density-voltage characterizations indicate that device performance decreases during storage in the dark. Migration of iodide (I-) ions to the electron-transport layer (ETL) and iodine vacancies (VI-+) to the hole-transport layer (HTL) forms localized shunts in the absorber layer. Pinhole formation, surrounded by FA+-rich regions, explains the extent of damage in comparably aged films. In summary, this work emphasizes the importance of reporting stability under different stress conditions, coupled with postdegradation and dark recovery analyses of PSCs to better understand the complexities of perovskite instability under real-life conditions such as expected during outdoor operation.

16.
Nat Commun ; 15(1): 3372, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643198

RESUMEN

Optical interference filters (OIFs) are vital components for a wide range of optical and photonic systems. They are pivotal in controlling spectral transmission and reflection upon demand. OIFs rely on optical interference of the incident wave at multilayers, which are fabricated with nanometer precision. Here, we demonstrate that these requirements can be fulfilled by inkjet printing. This versatile technology offers a high degree of freedom in manufacturing, as well as cost-affordable and rapid-prototyping features from the micron to the meter scale. In this work, via rational ink design and formulation, OIFs were fully inkjet printed in ambient conditions. Longpass, shortpass, bandpass, and dichroic OIFs were fabricated, and precise control of the spectral response in OIFs was realized. Subsequently, customized lateral patterning of OIFs by inkjet printing was achieved. Furthermore, upscaling of the printed OIFs to A4 size (29.7 × 21.0 cm²) was demonstrated.

17.
Energy Environ Sci ; 17(8): 2800-2814, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38659971

RESUMEN

The recent tremendous progress in monolithic perovskite-based double-junction solar cells is just the start of a new era of ultra-high-efficiency multi-junction photovoltaics. We report on triple-junction perovskite-perovskite-silicon solar cells with a record power conversion efficiency of 24.4%. Optimizing the light management of each perovskite sub-cell (∼1.84 and ∼1.52 eV for top and middle cells, respectively), we maximize the current generation up to 11.6 mA cm-2. Key to this achievement was our development of a high-performance middle perovskite sub-cell, employing a stable pure-α-phase high-quality formamidinium lead iodide perovskite thin film (free of wrinkles, cracks, and pinholes). This enables a high open-circuit voltage of 2.84 V in a triple junction. Non-encapsulated triple-junction devices retain up to 96.6% of their initial efficiency if stored in the dark at 85 °C for 1081 h.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37906716

RESUMEN

Transferring record power conversion efficiency (PCE) >25% of spin coated perovskite solar cells (PSCs) from the laboratory scale to large-area photovoltaic modules requires significant advances in scalable fabrication techniques. In this work, we demonstrate the fundamental interrelation between drying dynamics of slot-die coated precursor solution thin films and the quality of resulting slot-die coated gas-quenched polycrystalline perovskite thin films. Well-defined drying conditions are established using a temperature-stabilized, movable table and a flow-controlled, oblique impinging slot nozzle purged with nitrogen. The accurately deposited solution thin film on the substrate is recorded by a tilted CCD camera, allowing for in situ monitoring of the perovskite thin film formation. With the tracking of crystallization dynamics during the drying process, we identify the critical process parameters needed for the design of optimal drying and gas quenching systems. In addition, defining different drying regimes, we derive practical slot jet adjustments preventing gas backflow and demonstrate large-area, homogeneous, and pinhole-free slot-die coated perovskite thin films that result in solar cells with PCEs of up to 18.6%. Our study reveals key interrelations of process parameters, e.g., the gas flow and drying velocity, and the exact crystallization position with the morphology formation of fabricated thin films, resulting in a homogeneous performance of corresponding 50 × 50 mm2 solar minimodules (17.2%) with only minimal upscaling loss. In addition, we validate a previously developed model on the drying dynamics of perovskite thin films on small-area slot-die coated areas of ≥100 cm2. The study provides methodical guidelines for the design of future slot-die coating setups and establishes a step forward to a successful transfer of solution processes towards industrial-scale deposition systems beyond brute force optimization.

19.
Sci Adv ; 9(35): eadh5083, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37656792

RESUMEN

Hybrid perovskite semiconductor materials are predicted to lock chirality into place and encode asymmetry into their electronic states, while softness of their crystal lattice accommodates lattice strain to maintain high crystal quality with low defect densities, necessary for high luminescence yields. We report photoluminescence quantum efficiencies as high as 39% and degrees of circularly polarized photoluminescence of up to 52%, at room temperature, in the chiral layered hybrid lead-halide perovskites (R/S/Rac)-3BrMBA2PbI4 [3BrMBA = 1-(3-bromphenyl)-ethylamine]. Using transient chiroptical spectroscopy, we explain the excellent photoluminescence yields from suppression of nonradiative loss channels and high rates of radiative recombination. We further find that photoexcitations show polarization lifetimes that exceed the time scales of radiative decays, which rationalize the high degrees of polarized luminescence. Our findings pave the way toward high-performance solution-processed photonic systems for chiroptical applications and chiral-spintronic logic at room temperature.

20.
J Phys Chem Lett ; 13(2): 552-558, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35007079

RESUMEN

Defect states are known to trigger trap-assisted nonradiative recombination, restricting the performance of perovskite solar cells (PSCs). Here, we investigate the trap states in long-term thermally stressed methylammonium lead iodide (MAPbI3) perovskite thin films over 500 h at 85 °C employing thermally stimulated current measurements. A prominent deep trap level was detected with an activation energy of ∼0.459 eV in MAPbI3 without being thermally stressed. Interestingly, upon the application of thermal stress, an additional deep trap level of activation energy ∼0.414 eV emerges and grows with thermal stress duration. After 500 h of thermal stress, the trap density was ∼1016 cm-3. The trend of open-circuit voltage loss was in line with the trap density variation with thermal stress time, which elucidates the enhanced nonradiative recombination through these trap states. This work opens a path to understanding the mechanism behind long-term thermal instability and further inspires the development of strategies to minimize trap formation in PSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA