Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Obes (Lond) ; 45(5): 1074-1085, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33637953

RESUMEN

BACKGROUND/OBJECTIVES: Maternal obesity impacts vascular functions linked to metabolic disorders in offspring, leading to cardiovascular diseases during adulthood. Even if the relation between prenatal conditioning of cardiovascular diseases by maternal obesity and vascular function begins to be documented, little is known about resistance arteries. They are of particular interest because of their specific role in the regulation of local blood flow. Then our study aims to determine if maternal obesity can directly program fetal vascular dysfunction of resistance arteries, independently of metabolic disorders. METHODS: With a model of rats exposed in utero to mild maternal diet-induced obesity (OMO), we investigated third-order mesenteric arteries of 4-month old rats in absence of metabolic disorders. The methylation profile of these vessels was determined by reduced representation bisulfite sequencing (RRBS). Vascular structure and reactivity were investigated using histomorphometry analysis and wire-myography. The metabolic function was evaluated by insulin and glucose tolerance tests, plasma lipid profile, and adipose tissue analysis. RESULTS: At 4 months of age, small mesenteric arteries of OMO presented specific epigenetic modulations of matrix metalloproteinases (MMPs), collagens, and potassium channels genes in association with an outward remodeling and perturbations in the endothelium-dependent vasodilation pathways (greater contribution of EDHFs pathway in OMO males compared to control rats, and greater implication of PGI2 in OMO females compared to control rats). These vascular modifications were detected in absence of metabolic disorders. CONCLUSIONS: Our study reports a specific methylation profile of resistance arteries associated with vascular remodeling and vasodilation balance perturbations in offspring exposed in utero to maternal obesity, in absence of metabolic dysfunctions.


Asunto(s)
Endotelio Vascular , Epigénesis Genética , Obesidad Materna/fisiopatología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Factores Sexuales , Resistencia Vascular , Animales , Colágeno/genética , Metilación de ADN , Dieta Alta en Grasa , Endotelio Vascular/fisiopatología , Femenino , Masculino , Metaloproteinasas de la Matriz/genética , Canales de Potasio/genética , Embarazo , Ratas , Ratas Sprague-Dawley
2.
iScience ; 27(2): 109018, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38357665

RESUMEN

Understanding the emergence of human notochordal cells (NC) is essential for the development of regenerative approaches. We present a comprehensive investigation into the specification and generation of bona fide NC using a straightforward pluripotent stem cell (PSC)-based system benchmarked with human fetal notochord. By integrating in vitro and in vivo transcriptomic data at single-cell resolution, we establish an extended molecular signature and overcome the limitations associated with studying human notochordal lineage at early developmental stages. We show that TGF-ß inhibition enhances the yield and homogeneity of notochordal lineage commitment in vitro. Furthermore, this study characterizes regulators of cell-fate decision and matrisome enriched in the notochordal niche. Importantly, we identify specific cell-surface markers opening avenues for differentiation refinement, NC purification, and functional studies. Altogether, this study provides a human notochord transcriptomic reference that will serve as a resource for notochord identification in human systems, diseased-tissues modeling, and facilitating future biomedical research.

3.
JOR Spine ; 6(3): e1272, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37780826

RESUMEN

Background: Lineage-tracing experiments have established that the central region of the mature intervertebral disc, the nucleus pulposus (NP), develops from the embryonic structure called "the notochord". However, changes in the cells derived from the notochord which form the NP (i.e., notochordal cells [NCs]), in terms of their phenotype and functional identity from early developmental stages to skeletal maturation are less understood. These key issues require further investigation to better comprehend the role of NCs in homeostasis and degeneration as well as their potential for regeneration. Progress in utilizing NCs is currently hampered due to poor consistency and lack of consensus methodology for in vitro NC extraction, manipulation, and characterization. Methods: Here, an international group has come together to provide key recommendations and methodologies for NC isolation within key species, numeration, in vitro manipulation and culture, and characterization. Results: Recommeded protocols are provided for isolation and culture of NCs. Experimental testing provided recommended methodology for numeration of NCs. The issues of cryopreservation are demonstrated, and a pannel of immunohistochemical markers are provided to inform NC characterization. Conclusions: Together we hope this article provides a road map for in vitro studies of NCs to support advances in research into NC physiology and their potential in regenerative therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA