Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 51(13): 7458-7466, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28562016

RESUMEN

The effects of methylglyoxal uptake on the physical and optical properties of aerosol containing amines or ammonium sulfate were determined before and after cloud processing in a temperature- and RH-controlled chamber. The formation of brown carbon was observed upon methylglyoxal addition, detected as an increase in water-soluble organic carbon mass absorption coefficients below 370 nm and as a drop in single-scattering albedo at 450 nm. The imaginary refractive index component k450 reached a maximum value of 0.03 ± 0.009 with aqueous glycine aerosol particles. Browning of solid particles occurred at rates limited by chamber mixing (<1 min), and in liquid particles occurred more gradually, but in all cases occurred much more rapidly than in bulk aqueous studies. Further browning in AS and methylammonium sulfate seeds was triggered by cloud events with chamber lights on, suggesting photosensitized brown carbon formation. Despite these changes in optical aerosol characteristics, increases in dried aerosol mass were rarely observed (<1 µg/m3 in all cases), consistent with previous experiments on methylglyoxal. Under dry, particle-free conditions, methylglyoxal reacted (presumably on chamber walls) with methylamine with a rate constant k = (9 ± 2) × 10-17 cm3 molecule-1 s-1 at 294 K and activation energy Ea = 64 ± 37 kJ/mol.


Asunto(s)
Aerosoles , Compuestos de Amonio , Piruvaldehído , Aminas , Carbono
2.
Geophys Res Lett ; 44(5): 2562-2570, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28503004

RESUMEN

Secondary organic aerosols (SOA) forms a major fraction of organic aerosols in the atmosphere. Knowledge of SOA properties that affect their dynamics in the atmosphere is needed for improving climate models. By combining experimental and modeling techniques, we investigated the factors controlling SOA evaporation under different humidity conditions. Our experiments support the conclusion of particle phase diffusivity limiting the evaporation under dry conditions. Viscosity of particles at dry conditions was estimated to increase several orders of magnitude during evaporation, up to 109 Pa s. However, at atmospherically relevant relative humidity and time scales, our results show that diffusion limitations may have a minor effect on evaporation of the studied α-pinene SOA particles. Based on previous studies and our model simulations, we suggest that, in warm environments dominated by biogenic emissions, the major uncertainty in models describing the SOA particle evaporation is related to the volatility of SOA constituents.

3.
J Phys Chem A ; 121(18): 3327-3339, 2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-28388049

RESUMEN

Aerosol and molecular processing in the atmosphere occurs in a complex and variable environment consisting of multiple phases and interfacial regions. To explore the effects of such conditions on the reactivity of chemical systems, we employ an environmental simulation chamber to investigate the multiphase photolysis of pyruvic acid, which photoreacts in the troposphere in aqueous particles and in the gas phase. Upon irradiation of nebulized pyruvic acid, acetic acid and carbon dioxide are rapidly generated, which is consistent with previous literature on the bulk phase photolysis reactions. Additionally, we identify a new C6 product, zymonic acid, a species that has not previously been reported from pyruvic acid photolysis under any conditions. Its observation here, and corresponding spectroscopic signatures, indicates it could be formed by heterogeneous reactions at the droplet surface. Prior studies of the aqueous photolysis of pyruvic acid have shown that high-molecular-weight compounds are formed via radical reactions; however, they are inhibited by the presence of oxygen, leading to doubt as to whether the chemistry would occur in the atmosphere. Identification of dimethyltartaric acid from the photolysis of multiphase pyruvic acid in air confirms radical polymerization chemistry can compete with oxygen reactions to some extent under aerobic conditions. Evidence of additional polymerization within the particles during irradiation is suggested by the increasing viscosity and organic content of the particles. The implications of multiphase specific processes are then discussed within the broader scope of atmospheric science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA