Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 97(2): e0147822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36656015

RESUMEN

Little is known about the relationships between symptomatic early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load and upper airway mucosal gene expression and immune response. To examine the association of symptomatic SARS-CoV-2 early viral load with upper airway mucosal gene expression, we profiled the host mucosal transcriptome from nasopharyngeal swab samples from 68 adults with symptomatic, mild-to-moderate coronavirus disease 19 (COVID-19). We measured SARS-CoV-2 viral load using reverse transcription-quantitative PCR (RT-qPCR). We then examined the association of SARS-CoV-2 viral load with upper airway mucosal immune response. We detected SARS-CoV-2 in all samples and recovered >80% of the genome from 95% of the samples from symptomatic COVID-19 adults. The respiratory virome was dominated by SARS-CoV-2, with limited codetection of other respiratory viruses, with the human Rhinovirus C being identified in 4 (6%) samples. This limited codetection of other respiratory viral pathogens may be due to the implementation of public health measures, like social distancing and masking practices. We observed a significant positive correlation between SARS-CoV-2 viral load and interferon signaling (OAS2, OAS3, IFIT1, UPS18, ISG15, ISG20, IFITM1, and OASL), chemokine signaling (CXCL10 and CXCL11), and adaptive immune system (IFITM1, CD300E, and SIGLEC1) genes in symptomatic, mild-to-moderate COVID-19 adults, when adjusting for age, sex, and race. Interestingly, the expression levels of most of these genes plateaued at a cycle threshold (CT) value of ~25. Overall, our data show that the early nasal mucosal immune response to SARS-CoV-2 infection is viral load dependent, potentially modifying COVID-19 outcomes. IMPORTANCE Several prior studies have shown that SARS-CoV-2 viral load can predict the likelihood of disease spread and severity. A higher detectable SARS-CoV-2 plasma viral load was associated with worse respiratory disease severity. However, the relationship between SARS-CoV-2 viral load, airway mucosal gene expression, and immune response remains elusive. We profiled the nasal mucosal transcriptome from nasal samples collected from adults infected with SARS-CoV-2 during spring 2020 with mild-to-moderate symptoms using a comprehensive metatranscriptomics method. We observed a positive correlation between SARS-CoV-2 viral load, interferon signaling, chemokine signaling, and adaptive immune system in adults with COVID-19. Our data suggest that early nasal mucosal immune response to SARS-CoV-2 infection was viral load dependent and may modify COVID-19 outcomes.


Asunto(s)
COVID-19 , Expresión Génica , Mucosa Respiratoria , SARS-CoV-2 , Carga Viral , Adulto , Humanos , Quimiocinas/fisiología , COVID-19/inmunología , COVID-19/virología , Expresión Génica/inmunología , Inmunidad Mucosa/inmunología , Interferones/fisiología , SARS-CoV-2/genética , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología
2.
Circ Res ; 131(4): 328-344, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35862128

RESUMEN

BACKGROUND: Salt sensitivity of blood pressure is an independent predictor of cardiovascular morbidity and mortality. The exact mechanism by which salt intake increases blood pressure and cardiovascular risk is unknown. We previously found that sodium entry into antigen-presenting cells (APCs) via the amiloride-sensitive epithelial sodium channel EnaC (epithelial sodium channel) leads to the formation of IsoLGs (isolevuglandins) and release of proinflammatory cytokines to activate T cells and modulate salt-sensitive hypertension. In the current study, we hypothesized that ENaC-dependent entry of sodium into APCs activates the NLRP3 (NOD [nucleotide-binding and oligomerization domain]-like receptor family pyrin domain containing 3) inflammasome via IsoLG formation leading to salt-sensitive hypertension. METHODS: We performed RNA sequencing on human monocytes treated with elevated sodium in vitro and Cellular Indexing of Transcriptomes and Epitopes by Sequencing analysis of peripheral blood mononuclear cells from participants rigorously phenotyped for salt sensitivity of blood pressure using an established inpatient protocol. To determine mechanisms, we analyzed inflammasome activation in mouse models of deoxycorticosterone acetate salt-induced hypertension as well as salt-sensitive mice with ENaC inhibition or expression, IsoLG scavenging, and adoptive transfer of wild-type dendritic cells into NLRP3 deficient mice. RESULTS: We found that high levels of salt exposure upregulates the NLRP3 inflammasome, pyroptotic and apoptotic caspases, and IL (interleukin)-1ß transcription in human monocytes. Cellular Indexing of Transcriptomes and Epitopes by Sequencing revealed that components of the NLRP3 inflammasome and activation marker IL-1ß dynamically vary with changes in salt loading/depletion. Mechanistically, we found that sodium-induced activation of the NLRP3 inflammasome is ENaC and IsoLG dependent. NLRP3 deficient mice develop a blunted hypertensive response to elevated sodium, and this is restored by the adoptive transfer of NLRP3 replete APCs. CONCLUSIONS: These findings reveal a mechanistic link between ENaC, inflammation, and salt-sensitive hypertension involving NLRP3 inflammasome activation in APCs. APC activation via the NLRP3 inflammasome can serve as a potential diagnostic biomarker for salt sensitivity of blood pressure.


Asunto(s)
Hipertensión , Inflamasomas , Animales , Canales Epiteliales de Sodio/genética , Epítopos , Humanos , Hipertensión/inducido químicamente , Hipertensión/genética , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Leucocitos Mononucleares/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sodio/metabolismo , Cloruro de Sodio/metabolismo , Cloruro de Sodio Dietético/efectos adversos
3.
Infect Immun ; 91(2): e0042022, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36633416

RESUMEN

Both Helicobacter pylori infection and a high-salt diet are risk factors for gastric cancer. We previously showed that a mutation in fur (encoding the ferric uptake regulator variant Fur-R88H) was positively selected in H. pylori strains isolated from experimentally infected Mongolian gerbils receiving a high-salt diet. In the present study, we report that continuous H. pylori growth in high-salt conditions in vitro also leads to positive selection of the fur-R88H mutation. Competition experiments with strains containing wild-type fur or fur-R88H, each labeled with unique nucleotide barcodes, showed that the fur-R88H mutation enhances H. pylori fitness under high-salt conditions but reduces H. pylori fitness under routine culture conditions. The fitness advantage of the fur-R88H mutant under high-salt conditions was abrogated by the addition of supplemental iron. To test the hypothesis that the fur-R88H mutation alters the regulatory properties of Fur, we compared the transcriptional profiles of strains containing wild-type fur or fur-R88H. Increased transcript levels of fecA2, which encodes a predicted TonB-dependent outer membrane transporter, were detected in the fur-R88H variant compared to those in the strain containing wild-type fur under both high-salt and routine conditions. Competition experiments showed that fecA2 contributes to H. pylori fitness under both high-salt and routine conditions. These results provide new insights into mechanisms by which the fur-R88H mutation confers a selective advantage to H. pylori in high-salt environments.


Asunto(s)
Proteínas Bacterianas , Helicobacter pylori , Proteínas Represoras , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Infecciones por Helicobacter , Helicobacter pylori/genética , Helicobacter pylori/fisiología , Mutación , Cloruro de Sodio/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
4.
PLoS Pathog ; 11(4): e1004834, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25909486

RESUMEN

Invasive aspergillosis (IA) due to Aspergillus fumigatus is a major cause of mortality in immunocompromised patients. The discovery of highly fertile strains of A. fumigatus opened the possibility to merge classical and contemporary genetics to address key questions about this pathogen. The merger involves sexual recombination, selection of desired traits, and genomics to identify any associated loci. We constructed a highly fertile isogenic pair of A. fumigatus strains with opposite mating types and used them to investigate whether mating type is associated with virulence and to find the genetic loci involved in azole resistance. The pair was made isogenic by 9 successive backcross cycles of the foundational strain AFB62 (MAT1-1) with a highly fertile (MAT1-2) progeny. Genome sequencing showed that the F9 MAT1-2 progeny was essentially identical to the AFB62. The survival curves of animals infected with either strain in three different animal models showed no significant difference, suggesting that virulence in A. fumigatus was not associated with mating type. We then employed a relatively inexpensive, yet highly powerful strategy to identify genomic loci associated with azole resistance. We used traditional in vitro drug selection accompanied by classical sexual crosses of azole-sensitive with resistant isogenic strains. The offspring were plated under varying drug concentrations and pools of resulting colonies were analyzed by whole genome sequencing. We found that variants in 5 genes contributed to azole resistance, including mutations in erg11A (cyp51A), as well as multi-drug transporters, erg25, and in HMG-CoA reductase. The results demonstrated that with minimal investment into the sequencing of three pools from a cross of interest, the variation(s) that contribute any phenotype can be identified with nucleotide resolution. This approach can be applied to multiple areas of interest in A. fumigatus or other heterothallic pathogens, especially for virulence associated traits.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Azoles/farmacología , Farmacorresistencia Fúngica Múltiple , Hidroximetilglutaril-CoA Reductasas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Esterol 14-Desmetilasa/metabolismo , Animales , Antifúngicos/uso terapéutico , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Aspergilosis/patología , Aspergillus fumigatus/aislamiento & purificación , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidad , Azoles/uso terapéutico , Cruzamientos Genéticos , Farmacorresistencia Fúngica Múltiple/efectos de los fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes del Tipo Sexual de los Hongos/efectos de los fármacos , Sitios Genéticos/efectos de los fármacos , Hidroximetilglutaril-CoA Reductasas/genética , Itraconazol/farmacología , Itraconazol/uso terapéutico , Larva/efectos de los fármacos , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Oxigenasas de Función Mixta/genética , Mariposas Nocturnas/efectos de los fármacos , Mutación , Esterol 14-Desmetilasa/genética , Análisis de Supervivencia , Triazoles/farmacología , Triazoles/uso terapéutico , Virulencia/efectos de los fármacos , Voriconazol/farmacología , Voriconazol/uso terapéutico
5.
Malar J ; 16(1): 486, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29202752

RESUMEN

After publication of the article [1], it was brought to our attention that several symbols were missing from Fig. 1, including some cited in the figure's key. The correct version of the figure is shown below and has now been updated in the original article.

6.
Malar J ; 16(1): 384, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28938907

RESUMEN

BACKGROUND: Mild to severe anaemia is a common complication of malaria that is caused in part by insufficient erythropoiesis in the bone marrow. This study used systems biology to evaluate the transcriptional and alterations in cell populations in the bone marrow during Plasmodium cynomolgi infection of rhesus macaques (a model of Plasmodium vivax malaria) that may affect erythropoiesis. RESULTS: An appropriate erythropoietic response did not occur to compensate for anaemia during acute cynomolgi malaria despite an increase in erythropoietin levels. During this period, there were significant perturbations in the bone marrow transcriptome. In contrast, relapses did not induce anaemia and minimal changes in the bone marrow transcriptome were detected. The differentially expressed genes during acute infection were primarily related to ongoing inflammatory responses with significant contributions from Type I and Type II Interferon transcriptional signatures. These were associated with increased frequency of intermediate and non-classical monocytes. Recruitment and/or expansion of these populations was correlated with a decrease in the erythroid progenitor population during acute infection, suggesting that monocyte-associated inflammation may have contributed to anaemia. The decrease in erythroid progenitors was associated with downregulation of genes regulated by GATA1 and GATA2, two master regulators of erythropoiesis, providing a potential molecular basis for these findings. CONCLUSIONS: These data suggest the possibility that malarial anaemia may be driven by monocyte-associated disruption of GATA1/GATA2 function in erythroid progenitors resulting in insufficient erythropoiesis during acute infection.


Asunto(s)
Médula Ósea/fisiopatología , Eritropoyesis/inmunología , Malaria Vivax/fisiopatología , Malaria/fisiopatología , Monocitos/inmunología , Plasmodium cynomolgi/fisiología , Animales , Médula Ósea/parasitología , Humanos , Macaca mulatta , Malaria/parasitología , Malaria Vivax/parasitología , Masculino , Modelos Animales , Monocitos/parasitología
7.
Mol Genet Genomics ; 290(3): 877-900, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25472038

RESUMEN

Rhizoctonia solani is a plant pathogenic fungus that causes black scurf on tubers and stem and stolon canker on underground parts of potato plant. Early in the season, the fungus attacks germinating sprouts underground before they emerge from the soil. Damage at this stage results in delayed emergence of weakened plants with poor and uneven stands. The mechanism underlying this phenomenon has been investigated in this study by coupling a cDNA-suppression subtractive hybridization (SSH) library to differential screening to identify transcripts of R. solani that are down-regulated during infection of potato sprouts. We report on the identification of 33 unique genes with functions related to carbohydrate binding, vitamin synthesis, pathogenicity, translation, ATP and nucleic acid binding and other categories. RACE-PCR was used to clone and characterize the first full-length cDNA clones, RSENDO1 and RSGLYC1 that encode for an eukaryotic delta-endotoxin CytB protein and an intracellular glycosyl hydrolase, respectively. Quantitative real-time PCR revealed the down-regulation of RSENDO1 during infection of potato sprouts and the up-regulation of RSGLYC1 when the fungus was grown on a cellulose-based nutrient medium. In contrast, additional experiments have highlighted the down-regulation of RSENDO1 when R. solani was co-cultured with the mycoparasite Stachybotrys elegans and the bacterial antagonist Bacillus subtilis B26. These results advance our understanding of R. solani-potato interaction in subterranean parts of the plant. Such approaches could be considered in building an efficient integrated potato disease management program.


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Glicósido Hidrolasas/genética , Micotoxinas/genética , Rhizoctonia/genética , Solanum tuberosum/microbiología , Técnicas de Hibridación Sustractiva/métodos , Secuencia de Aminoácidos , Bacillus subtilis/fisiología , Secuencia de Bases , ADN Complementario/genética , Regulación hacia Abajo , Proteínas Fúngicas/genética , Biblioteca de Genes , Genoma Fúngico/genética , Glicósido Hidrolasas/metabolismo , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Micotoxinas/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Rhizoctonia/citología , Rhizoctonia/enzimología , Análisis de Secuencia de ADN , Stachybotrys/fisiología , Regulación hacia Arriba
8.
Mycopathologia ; 178(5-6): 331-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24996522

RESUMEN

We utilized RNAseq analysis of the Aspergillus fumigatus response to early hypoxic condition exposure. The results show that more than 89% of the A. fumigatus genome is expressed under normoxic and hypoxic conditions. Replicate samples were highly reproducible; however, comparisons between normoxia and hypoxia revealed that >23 and 35% of genes were differentially expressed after 30 and 120 min of hypoxia exposure, respectively. Consistent with our previous report detailing transcriptomic and proteomic responses at later time points, the results here show major repression of ribosomal function and induction of ergosterol biosynthesis, as well as activation of alternate respiratory mechanisms at the later time point. RNAseq data were used to define 32 hypoxia-specific genes, which were not expressed under normoxic conditions. Transcripts of a C6 transcription factor and a histidine kinase-response regulator were found only in hypoxia. In addition, several genes involved in the phosphoenylpyruvate and D-glyceraldehyde-3-phosphate metabolism were only expressed in hypoxia. Interestingly, a 216-bp ncRNA Afu-182 in the 3' region of insA (AFUB_064770) was significantly repressed under hypoxia with a 40-fold reduction in expression. A detailed analysis of Afu-182 showed similarity with several genes in the genome, many of which were also repressed in hypoxia. The results from this study show that hypoxia induces very early and widely drastic genome-wide responses in A. fumigatus that include expression of protein-coding and ncRNA genes. The role of these ncRNA genes in regulating the fungal hypoxia response is an exciting future research direction.


Asunto(s)
Aspergillus fumigatus/fisiología , Regulación Fúngica de la Expresión Génica , ARN no Traducido/metabolismo , Estrés Fisiológico , Anaerobiosis , Aspergillus fumigatus/genética , Perfilación de la Expresión Génica , Análisis de Secuencia de ADN
9.
Diabetes ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743615

RESUMEN

Cytochrome P450 epoxygenase Cyp2c44, a murine epoxyeicosatrienoic acid (EET) producing enzyme, promotes insulin sensitivity and Cyp2c44(-/-) mice show hepatic insulin resistance. Because insulin resistance leads to hepatic lipid accumulation and hyperlipidemia, we hypothesized that Cyp2c44 regulates hepatic lipid metabolism. Standard chow diet (SD) fed male Cyp2c44(-/-) mice had significantly decreased EET levels and increased hepatic and plasma lipid levels compared to wild-type mice. We showed increased hepatic plasma membrane localization of the FA transporter 2 (FATP2) and total unsaturated fatty acids and diacylglycerol levels. Cyp2c44(-/-) mice had impaired glucose tolerance and increased hepatic plasma membraneassociated PKCδ and phosphorylated IRS-1, two negative regulators of insulin signaling. Surprisingly, SD and high fat diet fed (HFD) Cyp2c44(-/-) mice had similar glucose tolerance and hepatic plasma membrane PKCδ levels, suggesting that SD-fed Cyp2c44(-/-) mice have reached their maximal glucose intolerance. Inhibition of PKCδ resulted in decreased IRS-1 serine phosphorylation and improved insulin-mediated signaling in Cyp2c44(-/-) hepatocytes. Finally, Cyp2c44(-/-) HFD-fed mice treated with the analog EET-A showed decreased hepatic plasma membrane FATP2 and PCKDδ levels with improved glucose tolerance and insulin signaling. In conclusion, loss of Cyp2c44 with concomitant decreased EET levels leads to increased hepatic FATP2 plasma membrane localization, diacylglycerol accumulation, and PKCδ-mediated attenuation of insulin signaling. Thus, Cyp2c44 acts as a regulator of lipid metabolism by linking it to insulin signaling.

10.
Hypertension ; 81(3): 516-529, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37675576

RESUMEN

BACKGROUND: The mechanisms by which salt increases blood pressure in people with salt sensitivity remain unclear. Our previous studies found that high sodium enters antigen-presenting cells (APCs) via the epithelial sodium channel and leads to the production of isolevuglandins and hypertension. In the current mechanistic clinical study, we hypothesized that epithelial sodium channel-dependent isolevuglandin-adduct formation in APCs is regulated by epoxyeicosatrienoic acids (EETs) and leads to salt-sensitive hypertension in humans. METHODS: Salt sensitivity was assessed in 19 hypertensive subjects using an inpatient salt loading and depletion protocol. Isolevuglandin-adduct accumulation in APCs was analyzed using flow cytometry. Gene expression in APCs was analyzed using cellular indexing of transcriptomes and epitopes by sequencing analysis of blood mononuclear cells. Plasma and urine EETs were measured using liquid chromatography-mass spectrometry. RESULTS: Baseline isolevuglandin+ APCs correlated with higher salt-sensitivity index. Isolevuglandin+ APCs significantly decreased from salt loading to depletion with an increasing salt-sensitivity index. We observed that human APCs express the epithelial sodium channel δ subunit, SGK1 (salt-sensing kinase serum/glucocorticoid kinase 1), and cytochrome P450 2S1. We found a direct correlation between baseline urinary 14,15 EET and salt-sensitivity index, whereas changes in urinary 14,15 EET negatively correlated with isolevuglandin+ monocytes from salt loading to depletion. Coincubation with 14,15 EET inhibited high-salt-induced increase in isolevuglandin+ APC. CONCLUSIONS: Isolevuglandin formation in APCs responds to acute changes in salt intake in salt-sensitive but not salt-resistant people with hypertension, and this may be regulated by renal 14,15 EET. Baseline levels of isolevuglandin+ APCs or urinary 14,15 EET may provide diagnostic tools for salt sensitivity without a protocol of salt loading.


Asunto(s)
Hipertensión , Lípidos , Cloruro de Sodio Dietético , Humanos , Cloruro de Sodio Dietético/metabolismo , Canales Epiteliales de Sodio/metabolismo , Cloruro de Sodio/metabolismo , Eicosanoides , Presión Sanguínea/fisiología
11.
Influenza Other Respir Viruses ; 17(1): e13083, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36510692

RESUMEN

BACKGROUND: COVID-19 prevalence has remained high throughout the pandemic with intermittent surges, due largely to the emergence of genetic variants, demonstrating the need for more accessible sequencing technologies for strain typing. METHODS: A ligation-based typing assay was developed to detect known variants of severe acute respiratory syndrome virus 2 (SARS-CoV-2) by identifying the presence of characteristic single-nucleotide polymorphisms (SNPs). General principles for extending the strategy to new variants and alternate diseases with SNPs of interest are described. Of note, this strategy leverages commercially available reagents for assay preparation, as well as standard real-time polymerase chain reaction (PCR) instrumentation for assay performance. RESULTS: The assay demonstrated a combined sensitivity and specificity of 96.6% and 99.5%, respectively, for the classification of 88 clinical samples of the Alpha, Delta, and Omicron variants relative to the gold standard of viral genome sequencing. It achieved an average limit of detection of 7.4 × 104 genome copies/mL in contrived nasopharyngeal samples. The ligation-based strategy performed robustly in the presence of additional polymorphisms in the targeted regions of interest as shown by the sequence alignment of clinical samples. CONCLUSIONS: The assay demonstrates the potential for robust variant typing with performance comparable with next-generation sequencing without the need for the time delays and resources required for sequencing. The reduced resource dependency and generalizability could expand access to variant classification information for pandemic surveillance.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento , Genoma Viral
12.
Front Immunol ; 14: 1099356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865544

RESUMEN

Persons with HIV (PWH) on long-term antiretroviral therapy (ART) have a higher incidence and prevalence of cardiometabolic diseases attributed, in part, to persistent inflammation despite viral suppression. In addition to traditional risk factors, immune responses to co-infections such as cytomegalovirus (CMV) may play an unappreciated role in cardiometabolic comorbidities and offer new potential therapeutic targets in a subgroup of individuals. We assessed the relationship of CX3CR1+, GPR56+, and CD57+/- T cells (termed CGC+) with comorbid conditions in a cohort of 134 PWH co-infected with CMV on long-term ART. We found that PWH with cardiometabolic diseases (non-alcoholic fatty liver disease, calcified coronary arteries, or diabetes) had higher circulating CGC+CD4+ T cells compared to metabolically healthy PWH. The traditional risk factor most correlated with CGC+CD4+ T cell frequency was fasting blood glucose, as well as starch/sucrose metabolites. While unstimulated CGC+CD4+ T cells, like other memory T cells, depend on oxidative phosphorylation for energy, they exhibited higher expression of carnitine palmitoyl transferase 1A compared to other CD4+ T cell subsets, suggesting a potentially greater capacity for fatty acid ß-oxidation. Lastly, we show that CMV-specific T cells against multiple viral epitopes are predominantly CGC+. Together, this study suggests that among PWH, CGC+ CD4+ T cells are frequently CMV-specific and are associated with diabetes, coronary arterial calcium, and non-alcoholic fatty liver disease. Future studies should assess whether anti-CMV therapies could reduce cardiometabolic disease risk in some individuals.


Asunto(s)
Linfocitos T CD4-Positivos , Enfermedades Cardiovasculares , Infecciones por VIH , Humanos , Calcio , Receptor 1 de Quimiocinas CX3C , Citomegalovirus , Factores de Riesgo , Subgrupos de Linfocitos T
13.
bioRxiv ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37162990

RESUMEN

Persistent systemic inflammation in persons with HIV (PWH) is accompanied by an increased risk of metabolic disease. Yet, changes in the innate and adaptive immune system in PWH who develop metabolic disease remain poorly defined. Using unbiased approaches, we show that PWH with prediabetes/diabetes have a significantly higher proportion of circulating CD14 + monocytes complexed to T cells. The complexed CD3 + T cells and CD14 + monocytes demonstrate functional immune synapses, increased expression of proinflammatory cytokines, and greater glucose utilization. Furthermore, these complexes harbor more latent HIV DNA compared to CD14 + monocytes or CD4 + T cells. Our results demonstrate that circulating CD3 + CD14 + T cell-monocyte pairs represent functional dynamic cellular interactions that likely contribute to inflammation and, in light of their increased proportion, may have a role in metabolic disease pathogenesis. These findings provide an incentive for future studies to investigate T cell-monocyte immune complexes as mechanistic in HIV cure and diseases of aging. Highlights: Persons with HIV and diabetes have increased circulating CD3 + CD14 + T cell-monocyte complexes. CD3 + CD14 + T cell-monocytes are a heterogenous group of functional and dynamic complexes. We can detect HIV in T cell-monocyte complexes. The proportion of CD3 + CD14 + T cell-monocyte complexes is positively associated with blood glucose levels and negatively with plasma IL-10 and CD4 + T regulatory cells.

14.
Front Med (Lausanne) ; 10: 1213889, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901413

RESUMEN

Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis (SJS/TEN) is a predominantly drug-induced disease, with a mortality rate of 15-20%, that engages the expertise of multiple disciplines: dermatology, allergy, immunology, clinical pharmacology, burn surgery, ophthalmology, urogynecology, and psychiatry. SJS/TEN has an incidence of 1-5/million persons per year in the United States, with even higher rates globally. One of the challenges of SJS/TEN has been developing the research infrastructure and coordination to answer questions capable of transforming clinical care and leading to improved patient outcomes. SJS/TEN 2021, the third research meeting of its kind, was held as a virtual meeting on August 28-29, 2021. The meeting brought together 428 international scientists, in addition to a community of 140 SJS/TEN survivors and family members. The goal of the meeting was to brainstorm strategies to support the continued growth of an international SJS/TEN research network, bridging science and the community. The community workshop section of the meeting focused on eight primary themes: mental health, eye care, SJS/TEN in children, non-drug induced SJS/TEN, long-term health complications, new advances in mechanisms and basic science, managing long-term scarring, considerations for skin of color, and COVID-19 vaccines. The meeting featured several important updates and identified areas of unmet research and clinical need that will be highlighted in this white paper.

15.
BMC Genomics ; 13: 698, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23234273

RESUMEN

BACKGROUND: The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. RESULTS: Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus), A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum). The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25-36 Kb) among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin) and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum) do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus), contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. CONCLUSIONS: The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent annotations for future genetic, evolutionary and population studies. Despite the conservation of the core genes, the mitochondrial genomes of Aspergillus and Penicillium species examined here exhibit significant amount of interspecies variation. Most of this variation can be attributed to accessory genes and mobile introns, presumably acquired by horizontal gene transfer of mitochondrial plasmids and intron homing.


Asunto(s)
Aspergillus/genética , Genes Fúngicos/genética , Tamaño del Genoma/genética , Genoma Mitocondrial/genética , Intrones/genética , Penicillium/genética , Análisis de Secuencia , Secuencia de Bases , Evolución Molecular , Genes Mitocondriales/genética , Variación Genética/genética , Anotación de Secuencia Molecular , Mutagénesis Insercional/genética , Filogenia , Plásmidos/genética
16.
Sci Rep ; 12(1): 16579, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195733

RESUMEN

The cotton rat (Sigmodon) is the gold standard pre-clinical small animal model for respiratory viral pathogens, especially for respiratory syncytial virus (RSV). However, without a reference genome or a published transcriptome, studies requiring gene expression analysis in cotton rats are severely limited. The aims of this study were to generate a comprehensive transcriptome from multiple tissues of two species of cotton rats that are commonly used as animal models (Sigmodon fulviventer and Sigmodon hispidus), and to compare and contrast gene expression changes and immune responses to RSV infection between the two species. Transcriptomes were assembled from lung, spleen, kidney, heart, and intestines for each species with a contig N50 > 1600. Annotation of contigs generated nearly 120,000 gene annotations for each species. The transcriptomes of S. fulviventer and S. hispidus were then used to assess immune response to RSV infection. We identified 238 unique genes that are significantly differentially expressed, including several genes implicated in RSV infection (e.g., Mx2, I27L2, LY6E, Viperin, Keratin 6A, ISG15, CXCL10, CXCL11, IRF9) as well as novel genes that have not previously described in RSV research (LG3BP, SYWC, ABEC1, IIGP1, CREB1). This study presents two comprehensive transcriptome references as resources for future gene expression analysis studies in the cotton rat model, as well as provides gene sequences for mechanistic characterization of molecular pathways. Overall, our results provide generalizable insights into the effect of host genetics on host-virus interactions, as well as identify new host therapeutic targets for RSV treatment and prevention.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Animales , Anticuerpos Antivirales , Modelos Animales de Enfermedad , Queratina-6/genética , Pulmón , Virus Sincitial Respiratorio Humano/genética , Sigmodontinae , Transcriptoma
17.
Dis Model Mech ; 15(5)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35438176

RESUMEN

To elucidate the molecular mechanisms that manifest lung abnormalities during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, we performed whole-transcriptome sequencing of lung autopsies from 31 patients with severe COVID-19 and ten uninfected controls. Using metatranscriptomics, we identified the existence of two distinct molecular signatures of lethal COVID-19. The dominant 'classical' signature (n=23) showed upregulation of the unfolded protein response, steroid biosynthesis and complement activation, supported by massive metabolic reprogramming leading to characteristic lung damage. The rarer signature (n=8) that potentially represents 'cytokine release syndrome' (CRS) showed upregulation of cytokines such as IL1 and CCL19, but absence of complement activation. We found that a majority of patients cleared SARS-CoV-2 infection, but they suffered from acute dysbiosis with characteristic enrichment of opportunistic pathogens such as Staphylococcus cohnii in 'classical' patients and Pasteurella multocida in CRS patients. Our results suggest two distinct models of lung pathology in severe COVID-19 patients, which can be identified through complement activation, presence of specific cytokines and characteristic microbiome. These findings can be used to design personalized therapy using in silico identified drug molecules or in mitigating specific secondary infections.


Asunto(s)
COVID-19 , Autopsia , Citocinas , Humanos , Pulmón/patología , SARS-CoV-2
18.
Influenza Other Respir Viruses ; 16(5): 832-836, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35415869

RESUMEN

The Omicron variant of SARS-CoV-2 achieved worldwide dominance in late 2021. Early work suggests that infections caused by the Omicron variant may be less severe than those caused by the Delta variant. We sought to compare clinical outcomes of infections caused by these two strains, confirmed by whole genome sequencing, over a short period of time, from respiratory samples collected from SARS-CoV-2 positive patients at a large medical center. We found that infections caused by the Omicron variant caused significantly less morbidity, including admission to the hospital and requirement for oxygen supplementation, and significantly less mortality than those caused by the Delta variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética
19.
bioRxiv ; 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36052371

RESUMEN

Little is known about the relationships between symptomatic early-time SARS-CoV-2 viral load and upper airway mucosal gene expression and immune response. To examine the association of symptomatic SARS-CoV-2 early viral load with upper airway mucosal gene expression, we profiled the host mucosal transcriptome from nasopharyngeal swab samples from 68 adults with symptomatic, mild-to-moderate COVID-19. We measured SARS-CoV-2 viral load using qRT-PCR. We then examined the association of SARS-CoV-2 viral load with upper airway mucosal immune response. We detected SARS-CoV-2 in all samples and recovered >80% of the genome from 85% of the samples from symptomatic COVID-19 adults. The respiratory virome was dominated by SARS-CoV-2, with limited co-detection of common respiratory viruses i.e., only the human Rhinovirus (HRV) being identified in 6% of the samples. We observed a significant positive correlation between SARS-CoV-2 viral load and interferon signaling (OAS2, OAS3, IFIT1, UPS18, ISG15, ISG20, IFITM1, and OASL), chemokine signaling (CXCL10 and CXCL11), and adaptive immune system (IFITM1, CD300E, and SIGLEC1) genes in symptomatic, mild-to-moderate COVID-19 adults, when adjusted for age, sex and race. Interestingly, the expression levels of most of these genes plateaued at a CT value of ~25. Overall, our data shows that early nasal mucosal immune response to SARS-CoV-2 infection is viral load dependent, which potentially could modify COVID-19 outcomes. AUTHOR SUMMARY: Several prior studies have shown that SARS-CoV-2 viral load can predict the likelihood of disease spread and severity. A higher detectable SARS-CoV-2 plasma viral load was associated with worse respiratory disease severity. However, the relationship between SARS-CoV-2 viral load and airway mucosal gene expression and immune response remains elusive. We profiled the nasal mucosal transcriptome from nasal samples collected from adults infected with SARS-CoV-2 during Spring 2020 with mild-to-moderate symptoms using a comprehensive metatranscriptomics method. We observed a positive correlation between SARS-CoV-2 viral load with interferon signaling, chemokine signaling, and adaptive immune system in adults with COVID-19. Our data suggest that early nasal mucosal immune response to SARS-CoV-2 infection was viral load-dependent and may modify COVID-19 outcomes.

20.
Front Cell Infect Microbiol ; 12: 1058926, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36710962

RESUMEN

Previous studies have suggested that a relationship exists between severity and transmissibility of malaria and variations in the gut microbiome, yet only limited information exists on the temporal dynamics of the gut microbial community during a malarial infection. Here, using a rhesus macaque model of relapsing malaria, we investigate how malaria affects the gut microbiome. In this study, we performed 16S sequencing on DNA isolated from rectal swabs of rhesus macaques over the course of an experimental malarial infection with Plasmodium cynomolgi and analyzed gut bacterial taxa abundance across primary and relapsing infections. We also performed metabolomics on blood plasma from the animals at the same timepoints and investigated changes in metabolic pathways over time. Members of Proteobacteria (family Helicobacteraceae) increased dramatically in relative abundance in the animal's gut microbiome during peak infection while Firmicutes (family Lactobacillaceae and Ruminococcaceae), Bacteroidetes (family Prevotellaceae) and Spirochaetes amongst others decreased compared to baseline levels. Alpha diversity metrics indicated decreased microbiome diversity at the peak of parasitemia, followed by restoration of diversity post-treatment. Comparison with healthy subjects suggested that the rectal microbiome during acute malaria is enriched with commensal bacteria typically found in the healthy animal's mucosa. Significant changes in the tryptophan-kynurenine immunomodulatory pathway were detected at peak infection with P. cynomolgi, a finding that has been described previously in the context of P. vivax infections in humans. During relapses, which have been shown to be associated with less inflammation and clinical severity, we observed minimal disruption to the gut microbiome, despite parasites being present. Altogether, these data suggest that the metabolic shift occurring during acute infection is associated with a concomitant shift in the gut microbiome, which is reversed post-treatment.


Asunto(s)
Microbioma Gastrointestinal , Malaria Vivax , Malaria , Plasmodium cynomolgi , Animales , Humanos , Macaca mulatta/genética , Macaca mulatta/metabolismo , Malaria/parasitología , Malaria Vivax/parasitología , Plasmodium cynomolgi/genética , Plasmodium cynomolgi/metabolismo , Bacterias/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA