RESUMEN
An extracellular L-asparaginase was isolated and purified from Bacillus megaterium MG1 to apparent homogeneity. The purification procedure involved a combination of ammonium sulfate precipitation, ion-exchange chromatography, and gel filtration techniques, resulting in a purification factor of 31.52 fold with a specific activity of 215 U mg-1. The molecular mass of the purified enzyme was approximately 47 kDa on SDS-PAGE and 185 kDa on native PAGE gel as well as in gel filtration column chromatography, revealing that the enzyme was a homotetramer. The Km and Vmax values of the purified enzyme were calculated to be 2.0 â ¹ 10-4 M and 1.198 mM s-1. Maximum enzyme activity was observed over a wide range of temperature and pH values with an optimum temperature of 37°C and pH 8.5. SDS and metal ions such as Fe2+, Cu2+, Mg2+, Co2+, Mn2+, and Ca2+ decreased the enzyme activity remarkably, whereas the addition of Na+ and K+ led to an increase in activity. The insensitivity of the protein in the presence of EDTA suggested that the enzyme might not essentially be a metalloprotein. Its marked stability and activity in organic solvents and reducing agents suggest that this asparaginase is highly suitable as a biotechnological tool with industrial applications.
Asunto(s)
Asparaginasa/aislamiento & purificación , Asparaginasa/metabolismo , Bacillus megaterium/enzimología , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Microbiología del Agua , Asparaginasa/química , Asparaginasa/genética , Asparagina/metabolismo , Bacillus megaterium/clasificación , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Activación Enzimática , Estabilidad de Enzimas , Espacio Extracelular/metabolismo , Bosques , Concentración de Iones de Hidrógeno , India , Cinética , Peso Molecular , Filogenia , Especificidad por Sustrato , TemperaturaRESUMEN
Bacillus aryabhattai RS1 isolated from rhizosphere produced an extracellular, low temperature active phytase. The cultural conditions for enzyme production were optimized to obtain 35 U mL-1 of activity. Purified phytase had specific activity and molecular weight of 72.97 U mg-1 and â¼40 kDa, respectively. The enzyme was optimally active at pH 6.5 and 40°C and was highly specific to phytate. It exhibited higher catalytic activity at low temperature, retaining over 40% activity at 10°C. Phytase was more thermostable in presence of Ca2+ ion and retained 100% residual activity on preincubation at 20-50°C for 30 min. Partial phytase encoding gene, phyB (816 bp) was cloned and sequenced. The encoded amino acid sequence (272 aa) contained two conserved motifs, DA[A/T/E]DDPA[I/L/V]W and NN[V/I]D[I/L/V]R[Y/D/Q] of ß-propellar phytase and had lower sequence homology with other Bacillus phytases, indicating its novelty. Phytase and the bacterial inoculum were effective in improving germination and growth of chickpea seedlings under phosphate limiting condition. Moreover, the potential applications of the enzyme with relatively high activity at lower temperatures (20-30°C) could also be extended to aquaculture and food processing. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:633-641, 2017.
Asunto(s)
6-Fitasa/metabolismo , Bacillus/enzimología , 6-Fitasa/genética , Bacillus/metabolismo , Cicer/crecimiento & desarrollo , Cicer/microbiología , Frío , Germinación/fisiología , Concentración de Iones de Hidrógeno , Rizosfera , TemperaturaRESUMEN
The phytase gene appAS was isolated from Shigella sp. CD2 genomic library. The 3.8 kb DNA fragment contained 1299 bp open reading frame encoding 432 amino acid protein (AppAS) with 22 amino acid signal peptide at N-terminal and three sites of N-glycosylation. AppAS contained the active site RHGXRXP and HDTN sequence motifs, which are conserved among histidine acid phosphatases. It showed maximum identity with phytase AppA of Escherichia coli and Citrobacter braakii. The appAS was expressed in Pichia pastoris and E. coli to produce recombinant phytase rAppAP and rAppAE, respectively. Purified glycosylated rAppAP and nonglycosylated rAppAE had specific activity of 967 and 2982 U mg(-1), respectively. Both had pH optima of 5.5 and temperature optima of 60°C. Compared with rAppAE, rAppAP was 13 and 17% less active at pH 3.5 and 7.5 and 11 and 18% less active at temperature 37 and 50°C, respectively; however, it was more active at higher incubation temperatures. Thermotolerance of rAppAP was 33% greater at 60°C and 24% greater at 70°C, when compared with rAppAE. Both the recombinant enzymes showed high specificity to phytate and resistance to trypsin. To our knowledge, this is the first report on cloning and expression of phytase from Shigella sp.