Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Annu Rev Genet ; 50: 67-91, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27617971

RESUMEN

Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. In response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface.


Asunto(s)
Bacterias/metabolismo , Bacterias/patogenicidad , Interacciones Huésped-Patógeno , Metales/metabolismo , Animales , Infecciones Bacterianas , Enfermedades Carenciales/microbiología , Dieta , Hemo/metabolismo , Humanos , Hierro/metabolismo , Sobrecarga de Hierro/microbiología , Sideróforos/metabolismo
2.
Infect Immun ; 91(6): e0043322, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37191522

RESUMEN

Acinetobacter infections have high rates of mortality due to an increasing incidence of infections by multidrug-resistant (MDR) and extensively-drug-resistant (XDR) strains. Therefore, new therapeutic strategies for the treatment of Acinetobacter infections are urgently needed. Acinetobacter spp. are Gram-negative coccobacilli that are obligate aerobes and can utilize a wide variety of carbon sources. Acinetobacter baumannii is the main cause of Acinetobacter infections, and recent work has identified multiple strategies A. baumannii uses to acquire nutrients and replicate in the face of host nutrient restriction. Some host nutrient sources also serve antimicrobial and immunomodulatory functions. Hence, understanding Acinetobacter metabolism during infection may provide new insights into novel infection control measures. In this review, we focus on the role of metabolism during infection and in resistance to antibiotics and other antimicrobial agents and discuss the possibility that metabolism may be exploited to identify novel targets to treat Acinetobacter infections.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Infección Hospitalaria , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Acinetobacter/tratamiento farmacológico , Farmacorresistencia Bacteriana , Farmacorresistencia Bacteriana Múltiple
3.
PLoS Pathog ; 16(3): e1008374, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32168364

RESUMEN

Antimicrobial resistance is increasing in pathogenic bacteria. Yet, the effect of antibiotic exposure on resistant bacteria has been underexplored and may affect pathogenesis. Here we describe the discovery that propagation of the human pathogen Acinetobacter baumannii in an aminoglycoside antibiotic results in alterations to the bacterium that interact with lung innate immunity resulting in enhanced bacterial clearance. Co-inoculation of mice with A. baumannii grown in the presence and absence of the aminoglycoside, kanamycin, induces enhanced clearance of a non-kanamycin-propagated strain. This finding can be replicated when kanamycin-propagated A. baumannii is killed prior to co-inoculation of mice, indicating the enhanced bacterial clearance results from interactions with innate host defenses in the lung. Infection with kanamycin-propagated A. baumannii alters the kinetics of phagocyte recruitment to the lung and reduces pro- and anti-inflammatory cytokine and chemokine production in the lung and blood. This culminates in reduced histopathologic evidence of lung injury during infection despite enhanced bacterial clearance. Further, the antibacterial response induced by killed aminoglycoside-propagated A. baumannii enhances the clearance of multiple clinically relevant Gram-negative pathogens from the lungs of infected mice. Together, these findings exemplify cooperation between antibiotics and the host immune system that affords protection against multiple antibiotic-resistant bacterial pathogens. Further, these findings highlight the potential for the development of a broad-spectrum therapeutic that exploits a similar mechanism to that described here and acts as an innate immunity modulator.


Asunto(s)
Infecciones por Acinetobacter/inmunología , Acinetobacter baumannii/inmunología , Inmunidad Innata/efectos de los fármacos , Kanamicina/farmacología , Pulmón/inmunología , Neumonía Bacteriana/inmunología , Infecciones por Acinetobacter/patología , Acinetobacter baumannii/patogenicidad , Animales , Quimiocinas/inmunología , Femenino , Pulmón/patología , Ratones , Ratones Noqueados , Fagocitos/patología , Neumonía Bacteriana/microbiología
4.
Infect Immun ; 89(12): e0045421, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34460288

RESUMEN

Acinetobacter baumannii is a nosocomial pathogen that exhibits substantial genomic plasticity. Here, the identification of two variants of A. baumannii ATCC 17978 that differ based on the presence of a 44-kb accessory locus, named AbaAL44 (A. baumannii accessory locus 44 kb), is described. Analyses of existing deposited data suggest that both variants are found in published studies of A. baumannii ATCC 17978 and that American Type Culture Collection (ATCC)-derived laboratory stocks comprise a mix of these two variants. Yet, each variant exhibits distinct interactions with the host in vitro and in vivo. Infection with the variant that harbors AbaAL44 (A. baumannii 17978 UN) results in decreased bacterial burdens and increased neutrophilic lung inflammation in a mouse model of pneumonia, and affects the production of interleukin 1 beta (IL-1ß) and IL-10 by infected macrophages. AbaAL44 harbors putative pathogenesis genes, including those predicted to encode a type I pilus cluster, a catalase, and a cardiolipin synthase. The accessory catalase increases A. baumannii resistance to oxidative stress and neutrophil-mediated killing in vitro. The accessory cardiolipin synthase plays a dichotomous role by promoting bacterial uptake and increasing IL-1ß production by macrophages, but also by enhancing bacterial resistance to cell envelope stress. Collectively, these findings highlight the phenotypic consequences of the genomic dynamism of A. baumannii through the evolution of two variants of a common type strain with distinct infection-related attributes.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/clasificación , Acinetobacter baumannii/genética , Variación Genética , Genotipo , Fenotipo , Animales , Proteínas Bacterianas/genética , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno , Ratones
5.
Biochemistry ; 59(31): 2882-2895, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32697076

RESUMEN

Staphylococcus aureus is a commensal pathogen that has evolved to protect itself from unfavorable conditions by forming complex community structures termed biofilms. The regulation of the formation of these structures is multifactorial and in S. aureus involves a number of transcriptional regulators. GbaA (glucose-induced biofilm accessory protein A) is a tetracycline repressor (TetR) family regulator that harbors two conserved Cys residues (C55 and C104) and impacts the regulation of formation of poly-N-acetylglucosamine-based biofilms in many methicillin-resistant S. aureus (MRSA) strains. Here, we show that GbaA-regulated transcription of a divergently transcribed operon in a MRSA strain can be induced by potent electrophiles, N-ethylmaleimide and methylglyoxal. Strikingly, induction of transcription in cells requires C55 or C104, but not both. These findings are consistent with in vitro small-angle X-ray scattering, chemical modification, and DNA operator binding experiments, which reveal that both reduced and intraprotomer (C55-C104) disulfide forms of GbaA have very similar overall structures and each exhibits a high affinity for the DNA operator, while DNA binding is strongly inhibited by derivatization of one or the other Cys residues via formation of a mixed disulfide with bacillithiol disulfide or a monothiol derivatization adduct with NEM. While both Cys residues are reactive toward electrophiles, C104 in the regulatory domain is the more reactive thiolate. These characteristics enhance the inducer specificity of GbaA and would preclude sensing of generalized cellular oxidative stress via disulfide bond formation. The implications of the findings for GbaA function in MRSA strains are discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Staphylococcus aureus/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Biopelículas , Polarización de Fluorescencia , Modelos Moleculares , Operón/genética , Conformación Proteica , Staphylococcus aureus/genética , Staphylococcus aureus/fisiología
6.
Infect Immun ; 88(7)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32341119

RESUMEN

Acinetobacter baumannii is a nosocomial pathogen capable of causing a range of diseases, including respiratory and urinary tract infections and bacteremia. Treatment options are limited due to the increasing rates of antibiotic resistance, underscoring the importance of identifying new targets for antimicrobial development. During infection, A. baumannii must acquire nutrients for replication and survival. These nutrients include carbon- and nitrogen-rich molecules that are needed for bacterial growth. One possible nutrient source within the host is amino acids, which can be utilized for protein synthesis or energy generation. Of these, the amino acid histidine is among the most energetically expensive for bacteria to synthesize; therefore, scavenging histidine from the environment is likely advantageous. We previously identified the A. baumannii histidine utilization (Hut) system as being linked to nutrient zinc homeostasis, but whether the Hut system is important for histidine-dependent energy generation or vertebrate colonization is unknown. Here, we demonstrate that the Hut system is conserved among pathogenic Acinetobacter and regulated by the transcriptional repressor HutC. In addition, the Hut system is required for energy generation using histidine as a carbon and nitrogen source. Histidine was also detected extracellularly in the murine lung, demonstrating that it is bioavailable during infection. Finally, the ammonia-releasing enzyme HutH is required for acquiring nitrogen from histidine in vitro, and strains inactivated for hutH are severely attenuated in a murine model of pneumonia. These results suggest that bioavailable histidine in the lung promotes Acinetobacter pathogenesis and that histidine serves as a crucial nitrogen source during infection.


Asunto(s)
Infecciones por Acinetobacter/metabolismo , Infecciones por Acinetobacter/microbiología , Acinetobacter/fisiología , Histidina/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Susceptibilidad a Enfermedades , Orden Génico , Replicón , Vertebrados
7.
Am J Respir Cell Mol Biol ; 61(4): 459-468, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30943376

RESUMEN

Calprotectin is a heterodimer of the proteins S100A8 and S100A9, and it is an abundant innate immune protein associated with inflammation. In humans, calprotectin transcription and protein abundance are associated with asthma and disease severity. However, mechanistic studies in experimental asthma models have been inconclusive, identifying both protective and pathogenic effects of calprotectin. To clarify the role of calprotectin in asthma, calprotectin-deficient S100A9-/- and wild-type (WT) C57BL/6 mice were compared in a murine model of allergic airway inflammation. Mice were intranasally challenged with extracts of the clinically relevant allergen, Alternaria alternata (Alt Ext), or PBS every third day over 9 days. On Day 10, BAL fluid and lung tissue homogenates were harvested and allergic airway inflammation was assessed. Alt Ext challenge induced release of S100A8/S100A9 to the alveolar space and increased protein expression in the alveolar epithelium of WT mice. Compared with WT mice, S100A9-/- mice displayed significantly enhanced allergic airway inflammation, including production of IL-13, CCL11, CCL24, serum IgE, eosinophil recruitment, and airway resistance and elastance. In response to Alt Ext, S100A9-/- mice accumulated significantly more IL-13+IL-5+CD4+ T-helper type 2 cells. S100A9-/- mice also accumulated a significantly lower proportion of CD4+ T regulatory (Treg) cells in the lung that had significantly lower expression of CD25. Calprotectin enhanced WT Treg cell suppressive activity in vitro. Therefore, this study identifies a role for the innate immune protein, S100A9, in protection from CD4+ T-helper type 2 cell hyperinflammation in response to Alt Ext. This protection is mediated, at least in part, by CD4+ Treg cell function.


Asunto(s)
Alveolitis Alérgica Extrínseca/inmunología , Calgranulina B/fisiología , Complejo de Antígeno L1 de Leucocito/fisiología , Pulmón/inmunología , Linfocitos T Reguladores/inmunología , Células Th2/inmunología , Inmunidad Adaptativa , Alérgenos/toxicidad , Alternaria/inmunología , Alveolitis Alérgica Extrínseca/etiología , Alveolitis Alérgica Extrínseca/patología , Animales , Hiperreactividad Bronquial/etiología , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/patología , Líquido del Lavado Bronquioalveolar/química , Calgranulina A/biosíntesis , Calgranulina A/genética , Calgranulina B/genética , Citocinas/metabolismo , Factores de Transcripción Forkhead/biosíntesis , Factores de Transcripción Forkhead/genética , Inmunoglobulina E/inmunología , Inflamación , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Eosinofilia Pulmonar/etiología , Eosinofilia Pulmonar/inmunología , Eosinofilia Pulmonar/patología , Organismos Libres de Patógenos Específicos
8.
J Proteome Res ; 17(10): 3396-3408, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30114907

RESUMEN

Proteomics, metabolomics, and transcriptomics generate comprehensive data sets, and current biocomputational capabilities allow their efficient integration for systems biology analysis. Published multiomics studies cover methodological advances as well as applications to biological questions. However, few studies have focused on the development of a high-throughput, unified sample preparation approach to complement high-throughput omic analytics. This report details the automation, benchmarking, and application of a strategy for transcriptomic, proteomic, and metabolomic analyses from a common sample. The approach, sample preparation for multi-omics technologies (SPOT), provides equivalent performance to typical individual omic preparation methods but greatly enhances throughput and minimizes the resources required for multiomic experiments. SPOT was applied to a multiomics time course experiment for zinc-treated HL-60 cells. The data reveal Zn effects on NRF2 antioxidant and NFkappaB signaling. High-throughput approaches such as these are critical for the acquisition of temporally resolved, multicondition, large multiomic data sets such as those necessary to assess complex clinical and biological concerns. Ultimately, this type of approach will provide an expanded understanding of challenging scientific questions across many fields.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Metabolómica/métodos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteómica/métodos , Genómica/métodos , Células HL-60 , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Biología de Sistemas/métodos , Zinc/farmacología
9.
J Biol Chem ; 292(48): 19628-19638, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28982978

RESUMEN

Acinetobacter baumannii, Acinetobacter nosocomialis, and Acinetobacter pittii are a frequent cause of multidrug-resistant, healthcare-associated infections. Our previous work demonstrated that A. nosocomialis M2 possesses a functional type II secretion system (T2SS) that is required for full virulence. Further, we identified the metallo-endopeptidase CpaA, which has been shown previously to cleave human Factor V and deregulate blood coagulation, as the most abundant type II secreted effector protein. We also demonstrated that its secretion is dependent on CpaB, a membrane-bound chaperone. In this study, we show that CpaA expression and secretion are conserved across several medically relevant Acinetobacter species. Additionally, we demonstrate that deletion of cpaA results in attenuation of A. nosocomialis M2 virulence in moth and mouse models. The virulence defects resulting from the deletion of cpaA were comparable with those observed upon abrogation of T2SS activity. The virulence defects resulting from the deletion of cpaA are comparable with those observed upon abrogation of T2SS activity. We also show that CpaA and CpaB strongly interact, forming a complex in a 1:1 ratio. Interestingly, deletion of the N-terminal transmembrane domain of CpaB results in robust secretion of CpaA and CpaB, indicating that the transmembrane domain is dispensable for CpaA secretion and likely functions to retain CpaB inside the cell. Limited proteolysis of spheroplasts revealed that the C-terminal domain of CpaB is exposed to the periplasm, suggesting that this is the site where CpaA and CpaB interact in vivo Last, we show that CpaB does not abolish the proteolytic activity of CpaA against human Factor V. We conclude that CpaA is, to the best of our knowledge, the first characterized, bona fide virulence factor secreted by Acinetobacter species.


Asunto(s)
Acinetobacter/patogenicidad , Chaperonas Moleculares/metabolismo , Péptido Hidrolasas/metabolismo , Acinetobacter/enzimología , Acinetobacter/metabolismo , Animales , Factor V/metabolismo , Larva/microbiología , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Proteolisis , Bazo/microbiología , Virulencia
10.
PLoS Pathog ; 12(1): e1005391, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26764912

RESUMEN

Acinetobacter baumannii, A. nosocomialis, and A. pittii have recently emerged as opportunistic human pathogens capable of causing severe human disease; however, the molecular mechanisms employed by Acinetobacter to cause disease remain poorly understood. Many pathogenic members of the genus Acinetobacter contain genes predicted to encode proteins required for the biogenesis of a type II secretion system (T2SS), which have been shown to mediate virulence in many Gram-negative organisms. Here we demonstrate that Acinetobacter nosocomialis strain M2 produces a functional T2SS, which is required for full virulence in both the Galleria mellonella and murine pulmonary infection models. Importantly, this is the first bona fide secretion system shown to be required for virulence in Acinetobacter. Using bioinformatics, proteomics, and mutational analyses, we show that Acinetobacter employs its T2SS to export multiple substrates, including the lipases LipA and LipH as well as the protease CpaA. Furthermore, the Acinetobacter T2SS, which is found scattered amongst five distinct loci, does not contain a dedicated pseudopilin peptidase, but instead relies on the type IV prepilin peptidase, reinforcing the common ancestry of these two systems. Lastly, two of the three secreted proteins characterized in this study require specific chaperones for secretion. These chaperones contain an N-terminal transmembrane domain, are encoded adjacently to their cognate effector, and their disruption abolishes type II secretion of their cognate effector. Bioinformatic analysis identified putative chaperones located adjacent to multiple previously known type II effectors from several Gram-negative bacteria, which suggests that T2SS chaperones constitute a separate class of membrane-associated chaperones mediating type II secretion.


Asunto(s)
Infecciones por Acinetobacter/metabolismo , Acinetobacter/patogenicidad , Chaperonas Moleculares/metabolismo , Sistemas de Secreción Tipo II/metabolismo , Animales , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Humanos , Ratones , Ratones Endogámicos C57BL , Virulencia
11.
J Proteome Res ; 16(3): 1364-1375, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28088864

RESUMEN

An understanding of how cells respond to perturbation is essential for biological applications; however, most approaches for profiling cellular response are limited in scope to pre-established targets. Global analysis of molecular mechanism will advance our understanding of the complex networks constituting cellular perturbation and lead to advancements in areas, such as infectious disease pathogenesis, developmental biology, pathophysiology, pharmacology, and toxicology. We have developed a high-throughput multiomics platform for comprehensive, de novo characterization of cellular mechanisms of action. Platform validation using cisplatin as a test compound demonstrates quantification of over 10 000 unique, significant molecular changes in less than 30 days. These data provide excellent coverage of known cisplatin-induced molecular changes and previously unrecognized insights into cisplatin resistance. This proof-of-principle study demonstrates the value of this platform as a resource to understand complex cellular responses in a high-throughput manner.


Asunto(s)
Células/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Redes y Vías Metabólicas , Apoptosis , Línea Celular , Supervivencia Celular , Cisplatino/farmacología , Biología Computacional/métodos , Humanos
12.
J Bacteriol ; 197(22): 3554-62, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26324451

RESUMEN

UNLABELLED: Thiamine pyrophosphate is a required cofactor for all forms of life. The pyrimidine moiety of thiamine, 2-methyl-4-amino-5-hydroxymethylpyrimidine phosphate (HMP-P), is synthesized by different mechanisms in bacteria and plants compared to fungi. In this study, Salmonella enterica was used as a host to probe requirements for activity of the yeast HMP-P synthase, Thi5p. Thi5p synthesizes HMP-P from histidine and pyridoxal-5-phosphate and was reported to use a backbone histidine as the substrate, which would mean that it was a single-turnover enzyme. Heterologous expression of Thi5p did not complement an S. enterica HMP-P auxotroph during growth with glucose as the sole carbon source. Genetic analyses described here showed that Thi5p was activated in S. enterica by alleles of sgrR that induced the sugar-phosphate stress response. Deletion of ptsG (encodes enzyme IICB [EIICB] of the phosphotransferase system [PTS]) also allowed function of Thi5p and required sgrR but not sgrS. This result suggested that the role of sgrS in activation of Thi5p was to decrease PtsG activity. In total, the data herein supported the hypothesis that one mechanism to activate Thi5p in S. enterica grown on minimal medium containing glucose (minimal glucose medium) required decreased PtsG activity and an unidentified gene regulated by SgrR. IMPORTANCE: This work describes a metabolic link between the sugar-phosphate stress response and the yeast thiamine biosynthetic enzyme Thi5p when heterologously expressed in Salmonella enterica during growth on minimal glucose medium. Suppressor analysis (i) identified a mutant class of the regulator SgrR that activate sugar-phosphate stress response constitutively and (ii) determined that Thi5p is conditionally active in S. enterica. These results emphasized the power of genetic systems in model organisms to uncover enzyme function and underlying metabolic network structure.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fosfatos/farmacología , Saccharomyces cerevisiae/enzimología , Salmonella enterica/metabolismo , Alelos , Proteínas Fúngicas/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Estructura Molecular , Mutación , Pirimidinas/química , Pirimidinas/metabolismo
13.
J Bacteriol ; 196(22): 3964-70, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25182497

RESUMEN

Thiamine pyrophosphate is a required coenzyme that contains a mechanistically important sulfur atom. In Salmonella enterica, sulfur is trafficked to both thiamine biosynthesis and 4-thiouridine biosynthesis by the enzyme ThiI using persulfide (R-S-S-H) chemistry. It was previously reported that a thiI mutant strain could grow independent of exogenous thiamine in the presence of cysteine, suggesting there was a second mechanism for sulfur mobilization. Data reported here show that oxidation products of cysteine rescue the growth of a thiI mutant strain by a mechanism that requires the transporter YdjN and the cysteine desulfhydrase CdsH. The data are consistent with a model in which sulfide produced by CdsH reacts with cystine (Cys-S-S-Cys), S-sulfocysteine (Cys-S-SO3 (-)), or another disulfide to form a small-molecule persulfide (R-S-S-H). We suggest that this persulfide replaced ThiI by donating sulfur to the thiamine sulfur carrier protein ThiS. This model describes a potential mechanism used for sulfur trafficking in organisms that lack ThiI but are capable of thiamine biosynthesis.


Asunto(s)
Cistationina gamma-Liasa/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Salmonella enterica/enzimología , Azufre/metabolismo , Tiamina/biosíntesis , Cistationina gamma-Liasa/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Salmonella enterica/genética , Salmonella enterica/metabolismo , Tiamina/química
14.
J Biol Chem ; 288(42): 30693-30699, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24014032

RESUMEN

ThiC (4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase; EC 4.1.99.17) is a radical S-adenosylmethionine (AdoMet) enzyme that uses a [4Fe-4S](+) cluster to reductively cleave AdoMet to methionine and a 5'-deoxyadenosyl radical that initiates catalysis. In plants and bacteria, ThiC converts the purine intermediate 5-aminoimidazole ribotide to 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate, an intermediate of thiamine pyrophosphate (coenzyme B1) biosynthesis. In this study, assay conditions were implemented that consistently generated 5-fold molar excess of HMP, demonstrating that ThiC undergoes multiple turnovers. ThiC activity was improved by in situ removal of product 5'-deoxyadenosine. The activity was inhibited by AdoMet metabolites S-adenosylhomocysteine, adenosine, 5'-deoxyadenosine, S-methyl-5'-thioadenosine, methionine, and homocysteine. Neither adenosine nor S-methyl-5'-thioadenosine had been shown to inhibit radical AdoMet enzymes, suggesting that ThiC is distinct from other family members. The parameters for improved ThiC activity and turnover described here will facilitate kinetic and mechanistic analyses of ThiC.


Asunto(s)
Proteínas Bacterianas/metabolismo , S-Adenosilmetionina/metabolismo , Tiamina Pirofosfato/metabolismo , Treponema denticola/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , Cinética , S-Adenosilmetionina/química , S-Adenosilmetionina/genética , Tiamina Pirofosfato/química , Tiamina Pirofosfato/genética , Treponema denticola/química , Treponema denticola/genética
15.
mBio ; 15(3): e0280423, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38364179

RESUMEN

Acinetobacter baumannii is a Gram-negative bacterial pathogen that poses a major health concern due to increasing multidrug resistance. The Gram-negative cell envelope is a key barrier to antimicrobial entry and includes an inner and outer membrane. The maintenance of lipid asymmetry (Mla) system is the main homeostatic mechanism by which Gram-negative bacteria maintain outer membrane asymmetry. Loss of the Mla system in A. baumannii results in attenuated virulence and increased susceptibility to membrane stressors and some antibiotics. We recently reported two strain variants of the A. baumannii type strain ATCC 17978: 17978VU and 17978UN. Here, ∆mlaF mutants in the two ATCC 17978 strains display different phenotypes for membrane stress resistance, antibiotic resistance, and pathogenicity in a murine pneumonia model. Although allele differences in obgE were previously reported to synergize with ∆mlaF to affect growth and stringent response, obgE alleles do not affect membrane stress resistance. Instead, a single-nucleotide polymorphism (SNP) in the essential gene encoding undecaprenyl pyrophosphate (Und-PP) synthase, uppS, results in decreased enzymatic rate and decrease in total Und-P levels in 17978UN compared to 17978VU. The UppSUN variant synergizes with ∆mlaF to reduce capsule and lipooligosaccharide (LOS) levels, increase susceptibility to membrane stress and antibiotics, and reduce persistence in a mouse lung infection. Und-P is a lipid glycan carrier required for the biosynthesis of A. baumannii capsule, cell wall, and glycoproteins. These findings uncover synergy between Und-P and the Mla system in maintaining the A. baumannii cell envelope and antibiotic resistance.IMPORTANCEAcinetobacter baumannii is a critical threat to global public health due to its multidrug resistance and persistence in hospital settings. Therefore, novel therapeutic approaches are urgently needed. We report that a defective undecaprenyl pyrophosphate synthase (UppS) paired with a perturbed Mla system leads to synthetically sick cells that are more susceptible to clinically relevant antibiotics and show reduced virulence in a lung infection model. These results suggest that targeting UppS or undecaprenyl species and the Mla system may resensitize A. baumannii to antibiotics in combination therapies. This work uncovers a previously unknown synergistic relationship in cellular envelope homeostasis that could be leveraged for use in combination therapy against A. baumannii.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Fosfatos de Poliisoprenilo , Animales , Ratones , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Pared Celular , Farmacorresistencia Bacteriana Múltiple
16.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790371

RESUMEN

Acinetobacter baumannii is a Gram-negative healthcare-associated pathogen that poses a major health concern due to increasing multidrug resistance. The Gram-negative cell envelope is a key barrier to antimicrobial entry and includes an inner and outer membrane. The outer membrane has an asymmetric composition that is important for structural integrity and barrier to the environment. Therefore, Gram-negative bacteria have mechanisms to uphold this asymmetry such as the maintenance of lipid asymmetry system (Mla), which removes glycerophospholipids from the outer leaflet of the outer membrane and transports them to the inner membrane. Loss of this system in A. baumannii results in attenuated virulence and increased susceptibility to membrane stressors and some antibiotics. We recently reported two strain variants of the A. baumannii type strain ATCC 17978, 17978VU and 17978UN. We show here that ΔmlaF mutants in the two strains display different phenotypes for membrane stress resistance, antibiotic resistance, and pathogenicity in a murine pneumonia model. We used comparative genetics to identify interactions between ATCC 17978 strain alleles and mlaF to uncover the cause behind the phenotypic differences. Although allele differences in obgE were previously reported to synergize with ΔmlaF to affect growth and stringent response, we show that obgE alleles do not affect membrane stress resistance. Instead, a single nucleotide polymorphism (SNP) in the essential gene encoding undecaprenyl pyrophosphate (Und-PP) synthase, uppS, synergizes with ΔmlaF to increase susceptibility to membrane stress and antibiotics, and reduce persistence in a mouse lung infection. Und-P is a lipid glycan carrier known to be required for biosynthesis of A. baumannii capsule, cell wall, and glycoproteins. Our data suggest that in the absence of the Mla system, the cellular level of Und-P is critical for envelope integrity, antibiotic resistance, and lipooligosaccharide abundance. These findings uncover synergy between Und-P and the Mla system in maintaining the A. baumannii outer membrane and stress resistance.

17.
J Bacteriol ; 194(22): 6088-95, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22961850

RESUMEN

In bacteria, the 4-amino-hydroxymethyl-2-methylpyrimidine (HMP) moiety of thiamine is synthesized from 5-aminoimidazole ribotide (AIR), a branch point metabolite of purine and thiamine biosynthesis. ThiC is a member of the radical S-adenosylmethionine (AdoMet) superfamily and catalyzes the complex chemical rearrangement of AIR to HMP-P. As reconstituted in vitro, the ThiC reaction requires AdoMet, AIR, and reductant. This study analyzed variants of ThiC in vivo and in vitro to probe the metabolic network surrounding AIR in Salmonella enterica. Several variants of ThiC that required metabolic perturbations to function in vivo were biochemically characterized in vitro. Results presented herein indicate that the subtleties of the metabolic network have not been captured in the current reconstitution of the ThiC reaction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Variación Genética , Salmonella typhimurium/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Metionina , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Ácido Pantoténico/metabolismo , Tiamina/biosíntesis , Tiamina/química
18.
Ann N Y Acad Sci ; 1518(1): 166-182, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36316792

RESUMEN

Pathogenic Acinetobacter species, most notably Acinetobacter baumannii, are a significant cause of healthcare-associated infections worldwide. Acinetobacter infections are of particular concern to global health due to the high rates of multidrug resistance and extensive drug resistance. Widespread genome sequencing and analysis has determined that bacterial antibiotic resistance is often acquired and disseminated through the movement of mobile genetic elements, including insertion sequences (IS), transposons, integrons, and conjugative plasmids. In Acinetobacter specifically, resistance to carbapenems and cephalosporins is highly correlated with IS, as many ISAba elements encode strong outwardly facing promoters that are required for sufficient expression of ß-lactamases to confer clinical resistance. Here, we review the role of mobile genetic elements in antibiotic resistance in Acinetobacter species through the framework of the mechanism of resistance acquisition and with a focus on experimentally validated mechanisms.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/genética , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Integrones/genética , Farmacorresistencia Bacteriana/genética , Elementos Transponibles de ADN/genética , Pruebas de Sensibilidad Microbiana
19.
FEMS Microbes ; 3: xtac016, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909464

RESUMEN

In vitro exposure of multiple Gram-negative bacteria to an aminoglycoside (AG) antibiotic has previously been demonstrated to result in bacterial alterations that interact with host factors to suppress Gram-negative pneumonia. However, the mechanisms resulting in suppression are not known. Here, the hypothesis that Gram-negative bacteria bind and retain AGs, which are introduced into the lung and interact with host defenses to affect bacterial killing, was tested. Following in vitro exposure of one of several, pathogenic Gram-negative bacteria to the AG antibiotics kanamycin or gentamicin, AGs were detected in bacterial cell pellets (up to 208 µg/mL). Using inhibitors of AG binding and internalization, the bacterial outer membrane was implicated as the predominant kanamycin and gentamicin reservoir. Following intranasal administration of gentamicin-bound bacteria or gentamicin solution at the time of infection with live, AG-naïve bacteria, gentamicin was detected in the lungs of infected mice (up to 8 µg/g). Co-inoculation with gentamicin-bound bacteria resulted in killing of AG-naïve bacteria by up to 3-log10, mirroring the effects of intranasal gentamicin treatment. In vitro killing of AG-naïve bacteria mediated by kanamycin-bound bacteria required the presence of detergents or pulmonary surfactant, suggesting that increased bacterial killing inside the murine lung is facilitated by the detergent component of pulmonary surfactant. These findings demonstrate that Gram-negative bacteria bind and retain AGs that can interact with host-derived pulmonary surfactant to enhance bacterial killing in the lung. This may help explain why AGs appear to have unique efficacy in the lung and might expand their clinical utility.

20.
J Bacteriol ; 193(18): 4582-7, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21724998

RESUMEN

In Salmonella enterica, ThiI is a bifunctional enzyme required for the synthesis of both the 4-thiouridine modification in tRNA and the thiazole moiety of thiamine. In 4-thiouridine biosynthesis, ThiI adenylates the tRNA uridine and transfers sulfur from a persulfide formed on the protein. The role of ThiI in thiazole synthesis is not yet well understood. Mutational analysis described here found that ThiI residues required for 4-thiouridine synthesis were not involved in thiazole biosynthesis. The data further showed that the C-terminal rhodanese domain of ThiI was sufficient for thiazole synthesis in vivo. Together, these data support the conclusion that sulfur mobilization in thiazole synthesis is mechanistically distinct from that in 4-thiouridine synthesis and suggest that functional annotation of ThiI in genome sequences should be readdressed. Nutritional studies described here identified an additional cysteine-dependent mechanism for sulfur mobilization to thiazole that did not require ThiI, IscS, SufS, or glutathione. The latter mechanism may provide insights into the chemistry used for sulfur mobilization to thiazole in organisms that do not utilize ThiI.


Asunto(s)
Proteínas Bacterianas/metabolismo , Salmonella typhimurium/metabolismo , Sulfurtransferasas/metabolismo , Tiamina/biosíntesis , Tiazoles/metabolismo , Proteínas Bacterianas/genética , Medios de Cultivo/química , Análisis Mutacional de ADN , Modelos Biológicos , Modelos Químicos , Estructura Terciaria de Proteína , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Sulfurtransferasas/genética , Terminología como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA