RESUMEN
All metazoans depend on the consumption of O2 by the mitochondrial oxidative phosphorylation system (OXPHOS) to produce energy. In addition, the OXPHOS uses O2 to produce reactive oxygen species that can drive cell adaptations1-4, a phenomenon that occurs in hypoxia4-8 and whose precise mechanism remains unknown. Ca2+ is the best known ion that acts as a second messenger9, yet the role ascribed to Na+ is to serve as a mere mediator of membrane potential10. Here we show that Na+ acts as a second messenger that regulates OXPHOS function and the production of reactive oxygen species by modulating the fluidity of the inner mitochondrial membrane. A conformational shift in mitochondrial complex I during acute hypoxia11 drives acidification of the matrix and the release of free Ca2+ from calcium phosphate (CaP) precipitates. The concomitant activation of the mitochondrial Na+/Ca2+ exchanger promotes the import of Na+ into the matrix. Na+ interacts with phospholipids, reducing inner mitochondrial membrane fluidity and the mobility of free ubiquinone between complex II and complex III, but not inside supercomplexes. As a consequence, superoxide is produced at complex III. The inhibition of Na+ import through the Na+/Ca2+ exchanger is sufficient to block this pathway, preventing adaptation to hypoxia. These results reveal that Na+ controls OXPHOS function and redox signalling through an unexpected interaction with phospholipids, with profound consequences for cellular metabolism.
Asunto(s)
Transporte de Electrón , Hipoxia/metabolismo , Mitocondrias/metabolismo , Sistemas de Mensajero Secundario , Sodio/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Fosfatos de Calcio/metabolismo , Línea Celular Tumoral , Precipitación Química , Humanos , Masculino , Fluidez de la Membrana , Ratones Endogámicos C57BL , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Intercambiador de Sodio-Calcio/metabolismoRESUMEN
Acute kidney injury is a common complication of rhabdomyolysis. A better understanding of this syndrome may be useful to identify novel therapeutic targets because there is no specific treatment so far. Ferroptosis is an iron-dependent form of regulated nonapoptotic cell death that is involved in renal injury. In this study, we investigated whether ferroptosis is associated with rhabdomyolysis-mediated renal damage, and we studied the therapeutic effect of curcumin, a powerful antioxidant with renoprotective properties. Induction of rhabdomyolysis in mice increased serum creatinine levels, endothelial damage, inflammatory chemokines, and cytokine expression, alteration of redox balance (increased lipid peroxidation and decreased antioxidant defenses), and tubular cell death. Treatment with curcumin initiated before or after rhabdomyolysis induction ameliorated all these pathologic and molecular alterations. Although apoptosis or receptor-interacting protein kinase (RIPK)3-mediated necroptosis were activated in rhabdomyolysis, our results suggest a key role of ferroptosis. Thus, treatment with ferrostatin 1, a ferroptosis inhibitor, improved renal function in glycerol-injected mice, whereas no beneficial effects were observed with the pan-caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-(O-methyl)-fluoromethylketone or in RIPK3-deficient mice. In cultured renal tubular cells, myoglobin (Mb) induced ferroptosis-sensitive cell death that was also inhibited by curcumin. Mechanistic in vitro studies showed that curcumin reduced Mb-mediated inflammation and oxidative stress by inhibiting the TLR4/NF-κB axis and activating the cytoprotective enzyme heme oxygenase 1. Our findings are the first to demonstrate the involvement of ferroptosis in rhabdomyolysis-associated renal damage and its sensitivity to curcumin treatment. Therefore, curcumin may be a potential therapeutic approach for patients with this syndrome.-Guerrero-Hue, M., García-Caballero, C., Palomino-Antolín, A., Rubio-Navarro, A., Vázquez-Carballo, C., Herencia, C., Martín-Sanchez, D., Farré-Alins, V., Egea, J., Cannata, P., Praga, M., Ortiz, A., Egido, J., Sanz, A. B., Moreno, J. A. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death.
Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Curcumina/farmacología , Ferroptosis/efectos de los fármacos , Rabdomiólisis/tratamiento farmacológico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Animales , Antioxidantes/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Hemo-Oxigenasa 1/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mioglobina/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Rabdomiólisis/complicaciones , Rabdomiólisis/patología , Receptor Toll-Like 4/metabolismoRESUMEN
We report the synthesis and relevant pharmacological properties of the quinoxalinetacrine (QT) hybrid QT78 in a project targeted to identify new non-hepatotoxic tacrine derivatives for Alzheimer's disease therapy. We have found that QT78 is less toxic than tacrine at high concentrations (from 100 µM to 1 mM), less potent than tacrine as a ChE inhibitor, but shows selective BuChE inhibition (IC50 (hAChE) = 22.0 ± 1.3 µM; IC50 (hBuChE) = 6.79 ± 0.33 µM). Moreover, QT78 showed effective and strong neuroprotection against diverse toxic stimuli, such as rotenone plus oligomycin-A or okadaic acid, of biological significance for Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa , Tacrina , Enfermedad de Alzheimer/enzimología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacocinética , Inhibidores de la Colinesterasa/farmacología , Células Hep G2 , Humanos , Tacrina/química , Tacrina/farmacocinética , Tacrina/farmacologíaRESUMEN
The therapy of complex neurodegenerative diseases requires the development of multitarget-directed drugs (MTDs). Novel indole derivatives with inhibitory activity towards acetyl/butyrylcholinesterases and monoamine oxidases A/B as well as the histamine H3 receptor (H3R) were obtained by optimization of the neuroprotectant ASS234 by incorporating generally accepted H3R pharmacophore motifs. These small-molecule hits demonstrated balanced activities at the targets, mostly in the nanomolar concentration range. Additional inâ vitro studies showed antioxidative neuroprotective effects as well as the ability to penetrate the blood-brain barrier. With this promising inâ vitro profile, contilisant (at 1â mg kg-1 i.p.) also significantly improved lipopolysaccharide-induced cognitive deficits.
Asunto(s)
Antioxidantes/química , Inhibidores de la Colinesterasa/química , Antagonistas de los Receptores Histamínicos H3/química , Indoles/química , Inhibidores de la Monoaminooxidasa/química , Fármacos Neuroprotectores/química , Animales , Antioxidantes/síntesis química , Antioxidantes/farmacocinética , Antioxidantes/uso terapéutico , Barrera Hematoencefálica/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/farmacocinética , Inhibidores de la Colinesterasa/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Diseño de Fármacos , Antagonistas de los Receptores Histamínicos H3/síntesis química , Antagonistas de los Receptores Histamínicos H3/farmacocinética , Antagonistas de los Receptores Histamínicos H3/uso terapéutico , Humanos , Indoles/síntesis química , Indoles/farmacocinética , Indoles/uso terapéutico , Ligandos , Ratones , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/farmacocinética , Inhibidores de la Monoaminooxidasa/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/uso terapéutico , Piperidinas/síntesis química , Piperidinas/química , Piperidinas/farmacocinética , Piperidinas/uso terapéuticoRESUMEN
Massive intravascular hemolysis occurs not unfrequently in many clinical conditions. Breakdown of erythrocytes promotes the accumulation of heme-derivates in the kidney, increasing oxidative stress and cell death, thus promoting acute kidney injury (AKI). NADPH oxidase 4 (Nox4) is a major source of reactive oxygen species (ROS) in the kidney, however it is unknown the role of Nox4 in hemolysis and whether inhibition of this enzyme may protect from heme-mediated injury. To answer these questions, we elicited intravascular hemolysis in wild type and Nox4 knockout mice. We also evaluated whether nephrotoxic effects of heme may be reduced by using Nox4 siRNA and pharmacologic inhibition with GKT137831, a Nox4 inhibitor, both in vivo and in cultured renal cells. Our results showed that induction of massive hemolysis elicited AKI characterized by loss of renal function, morphological alterations of the tubular epithelium and podocytes, oxidative stress, inflammation, mitochondrial dysfunction, blockade of autophagy and cell death. These pathological effects were significantly prevented in Nox4-deficient mice and in animals treated with GKT137831. In vitro studies showed that Nox4 disruption by specific siRNAs or Nox4 inhibitors declined heme-mediated ROS production and cell death. Our data identify Nox4 as a key enzyme involved in intravascular hemolysis-induced AKI. Thus, Nox4 inhibition may be a potential therapeutic approach to prevent renal damage in patients with severe hemolytic crisis.
RESUMEN
The role of inflammation and immunity in the pathomechanism of neurodegenerative diseases has become increasingly relevant within the past few years. In this context, the NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in the activation of inflammatory responses by promoting the maturation and secretion of pro-inflammatory cytokines such as interleukin-1ß and interleukin-18. We hypothesized that the interplay between nuclear factor erythroid 2-related factor 2 (Nrf2) and NADPH oxidase 4 (NOX4) may play a critical role in the activation of the NLRP3 inflammasome and subsequent inflammatory responses. After priming mixed glial cultures with lipopolysaccharide (LPS), cells were stimulated with ATP, showing a significant reduction of IL1-ß release in NOX4 and Nrf2 KO mice. Importantly, NOX4 inhibition using GKT136901 also reduced IL-1ß release, as in NOX4 KO mixed glial cultures. Moreover, we measured NOX4 and NLRP3 expression in wild-type mixed glial cultures following LPS treatment, observing that both increased after TLR4 activation, while 24 h treatment with tert-butylhydroquinone, a potent Nrf2 inducer, significantly reduced NLRP3 expression. LPS administration resulted in significant cognitive impairment compared to the control group. Indeed, LPS also modified the expression of NLRP3 and NOX4 in mouse hippocampus. However, mice treated with GKT136901 after LPS impairment showed a significantly improved discrimination index and recovered the expression of inflammatory genes to normal levels compared with wild-type animals. Hence, we here validate NOX4 as a key player in NLRP3 inflammasome activation, suggesting NOX4 pharmacological inhibition as a potent therapeutic approach in neurodegenerative diseases.
RESUMEN
BACKGROUND: Rhabdomyolysis is a severe clinical syndrome associated to acute kidney injury (AKI) and chronic kidney disease (CKD). TWEAK/Fn14 signaling axis regulates renal inflammation and tubular cell death. However, the functional role of TWEAK/Fn14 in rhabdomyolysis remains unknown. METHODS: Rhabdomyolysis was induced in wild-type, TWEAK- and Fn14-deficient mice or mice treated with TWEAK blocking antibody. Renal injury, inflammation, fibrosis and cell death were assessed. Additionally, we performed in vivo and in vitro studies to explore the possible signalling pathways involved in Fn14 regulation. FINDINGS: Fn14 renal expression was increased in mice with rhabdomyolysis, correlating with decline of renal function. Mechanistically, myoglobin (Mb) induced Fn14 expression via ERK and p38 pathway, whereas Nrf2 activation diminished Mb-mediated Fn14 upregulation in cultured renal cells. TWEAK or Fn14 genetic depletion ameliorated rhabdomyolysis-associated loss of renal function, histological damage, tubular cell death, inflammation, and expression of both tubular and endothelial injury markers. Deficiency of TWEAK or Fn14 also decreased long-term renal inflammation and fibrosis in mice with rhabdomyolysis. Finally, pharmacological treatment with a blocking TWEAK antibody diminished the expression of acute renal injury markers and cell death and lessened residual kidney fibrosis and chronic inflammation in rhabdomyolysis. INTERPRETATION: TWEAK/Fn14 axis participates in the pathogenesis of rhabdomyolysis-AKI and subsequent AKI-CKD transition. Blockade of this signaling pathway may represent a promising therapeutic strategy for reducing rhabdomyolysis-mediated renal injury. FUNDING: Spanish Ministry of Science and Innovation, ISCIII and Junta de Andalucía.
Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Rabdomiólisis , Animales , Ratones , Lesión Renal Aguda/metabolismo , Citocina TWEAK/metabolismo , Fibrosis , Inflamación , Rabdomiólisis/complicaciones , Factores de Necrosis Tumoral/metabolismo , Receptor de TWEAK/metabolismoRESUMEN
Despite the numerous research studies on traumatic brain injury (TBI), many physiopathologic mechanisms remain unknown. TBI is a complex process, in which neuroinflammation and glial cells play an important role in exerting a functional immune and damage-repair response. The activation of the NLRP3 inflammasome is one of the first steps to initiate neuroinflammation and so its regulation is essential. Using a closed-head injury model and a pharmacological (MCC950; 3 mg/kg, pre- and post-injury) and genetical approach (NLRP3 knockout (KO) mice), we defined the transcriptional and behavioral profiles 24 h after TBI. Wild-type (WT) mice showed a strong pro-inflammatory response, with increased expression of inflammasome components, microglia and astrocytes markers, and cytokines. There was no difference in the IL1ß production between WT and KO, nor compensatory mechanisms of other inflammasomes. However, some microglia and astrocyte markers were overexpressed in KO mice, resulting in an exacerbated cytokine expression. Pretreatment with MCC950 replicated the behavioral and blood-brain barrier results observed in KO mice and its administration 1 h after the lesion improved the damage. These findings highlight the importance of NLRP3 time-dependent activation and its role in the fine regulation of glial response.
RESUMEN
NLRP3 is involved in the pathophysiology of several inflammatory diseases. Therefore, there is high current interest in the clinical development of new NLRP3 inflammasome small inhibitors to treat these diseases. Novel N-sulfonylureas were obtained by the replacement of the hexahydroindacene moiety of the previously described NLRP3 inhibitor MCC950. These new derivatives show moderate to high potency in inhibiting IL-1ß release in vitro. The greatest effect was observed for compound 4b, which was similar to MCC950. Moreover, compound 4b was able to reduce caspase-1 activation, oligomerization of ASC, and therefore, IL-1ß processing. Additional in silico predictions confirmed the safety profile of compound 4b, and in vitro studies in AML12 hepatic cells confirmed the absence of toxicological effects. Finally, we evaluated in vivo anti-inflammatory properties of compound 4b, which showed a significant anti-inflammatory effect and reduced mechanical hyperalgesia at 3 and 10 mg/kg (i.p.) in an in vivo mouse model of gout.
Asunto(s)
Gota , Inflamasomas , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Hiperalgesia , Interleucina-1beta , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLRRESUMEN
BACKGROUND: Inflammasomes are cytosolic multiprotein complexes which, upon assembly, activate the maturation and secretion of the inflammatory cytokines IL-1ß and IL-18. However, participation of the NLRP3 inflammasome in ischaemic stroke remains controversial. Our aims were to determine the role of NLRP3 in brain ischaemia, and explore the mechanism involved in the potential protective effect of the neurovascular unit. METHODS: WT and NLRP3 knock-out mice were subjected to ischaemia by middle cerebral artery occlusion (60 min) with or without treatment with MCC950 at different time points post-stroke. Brain injury was measured histologically with 2,3,5-triphenyltetrazolium chloride (TTC) staining. RESULTS: We identified a time-dependent dual effect of NLRP3. While neither the pre-treatment with MCC950 nor the genetic approach (NLRP3 KO) proved to be neuroprotective, post-reperfusion treatment with MCC950 significantly reduced the infarct volume in a dose-dependent manner. Importantly, MCC950 improved the neuro-motor function and reduced the expression of different pro-inflammatory cytokines (IL-1ß and TNF-α), NLRP3 inflammasome components (NLRP3 and pro-caspase-1), protease expression (MMP9), and endothelial adhesion molecules (ICAM and VCAM). We observed a marked protection of the blood-brain barrier (BBB), which was also reflected in the recovery of the tight junction proteins (ZO-1 and Claudin-5). Additionally, MCC950 produced a reduction of the CCL2 chemokine in blood serum and in brain tissue, which lead to a reduction in the immune cell infiltration. CONCLUSIONS: These findings suggest that post-reperfusion NLRP3 inhibition may be an effective acute therapy for protecting the blood-brain barrier in cerebral ischaemia with potential clinical translation.
Asunto(s)
Isquemia Encefálica , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Citocinas/metabolismo , Furanos/farmacología , Furanos/uso terapéutico , Indenos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Sulfonamidas , Factor de Necrosis Tumoral alfa/efectos de los fármacosRESUMEN
BACKGROUND AND PURPOSE: Activation of astrocytes contributes to synaptic remodelling, tissue repair and neuronal survival following traumatic brain injury (TBI). The mechanisms by which these cells interact to resident/infiltrated inflammatory cells to rewire neuronal networks and repair brain functions remain poorly understood. Here, we explored how TLR4-induced astrocyte activation modified synapses and cerebrovascular integrity following TBI. EXPERIMENTAL APPROACH: To determine how functional astrocyte alterations induced by activation of TLR4 pathway in inflammatory cells regulate synapses and neurovascular integrity after TBI, we used pharmacology, genetic approaches, live calcium imaging, immunofluorescence, flow cytometry, blood-brain barrier (BBB) integrity assessment and molecular and behavioural methods. KEY RESULTS: Shortly after a TBI, there is a recruitment of excitable and reactive astrocytes mediated by TLR4 pathway activation with detrimental effects on post-synaptic density-95 (PSD-95)/vesicular glutamate transporter 1 (VGLUT1) synaptic puncta, BBB integrity and neurological outcome. Pharmacological blockage of the TLR4 pathway with resatorvid (TAK-242) partially reversed many of the observed effects. Synapses and BBB recovery after resatorvid administration were not observed in IP3 R2-/- mice, indicating that effects of TLR4 inhibition depend on the subsequent astrocyte activation. In addition, TBI increased the astrocytic-protein thrombospondin-1 necessary to induce a synaptic recovery in a sub-acute phase. CONCLUSIONS AND IMPLICATIONS: Our data demonstrate that TLR4-mediated signalling, most probably through microglia and/or infiltrated monocyte-astrocyte communication, plays a crucial role in the TBI pathophysiology and that its inhibition prevents synaptic loss and BBB damage accelerating tissue recovery/repair, which might represent a therapeutic potential in CNS injuries and disorders.
Asunto(s)
Astrocitos , Lesiones Traumáticas del Encéfalo , Animales , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Ratones , Microglía/metabolismo , Neuronas/metabolismo , Receptor Toll-Like 4/metabolismoRESUMEN
Cerebrovascular diseases such as ischemic stroke are known to exacerbate dementia caused by neurodegenerative pathologies such as Alzheimer's disease (AD). Besides, the increasing number of patients surviving stroke makes it necessary to treat the co-occurrence of these two diseases with a single and combined therapy. For the development of new dual therapeutic agents, eight hybrid quinolylnitrones have been designed and synthesized by the juxtaposition of selected pharmacophores from our most advanced lead-compounds for ischemic stroke and AD treatment. Biological analyses looking for efficient neuroprotective effects in suitable phenotypic assays led us to identify MC903 as a new small quinolylnitrone for the potential dual therapy of stroke and AD, showing strong neuroprotection on (i) primary cortical neurons under oxygen-glucose deprivation/normoglycemic reoxygenation as an experimental ischemia model; (ii), neuronal line cells treated with rotenone/oligomycin A, okadaic acid or ß-amyloid peptide Aß25-35, modeling toxic insults found among the effects of AD.
RESUMEN
Traumatic brain injury (TBI) is one of the leading causes of mortality and disability worldwide without any validated biomarker or set of biomarkers to help the diagnosis and evaluation of the evolution/prognosis of TBI patients. To achieve this aim, a deeper knowledge of the biochemical and pathophysiological processes triggered after the trauma is essential. Here, we identified the serum amyloid A1 protein-Toll-like receptor 4 (SAA1-TLR4) axis as an important link between inflammation and the outcome of TBI patients. Using serum and mRNA from white blood cells (WBC) of TBI patients, we found a positive correlation between serum SAA1 levels and injury severity, as well as with the 6-month outcome of TBI patients. SAA1 levels also correlate with the presence of TLR4 mRNA in WBC. In vitro, we found that SAA1 contributes to inflammation via TLR4 activation that releases inflammatory cytokines, which in turn increases SAA1 levels, establishing a positive proinflammatory loop. In vivo, post-TBI treatment with the TLR4-antagonist TAK242 reduces SAA1 levels, improves neurobehavioral outcome, and prevents blood-brain barrier disruption. Our data support further evaluation of (i) post-TBI treatment in the presence of TLR4 inhibition for limiting TBI-induced damage and (ii) SAA1-TLR4 as a biomarker of injury progression in TBI patients.
RESUMEN
Chronic kidney disease (CKD) is one of the fastest-growing causes of death and is predicted to become by 2040 the fifth global cause of death. CKD is characterized by increased oxidative stress and chronic inflammation. However, therapies to slow or prevent CKD progression remain an unmet need. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that plays a key role in protection against oxidative stress and regulation of the inflammatory response. Consequently, the use of compounds targeting Nrf2 has generated growing interest for nephrologists. Pre-clinical and clinical studies have demonstrated that Nrf2-inducing strategies prevent CKD progression and protect from acute kidney injury (AKI). In this article, we review current knowledge on the protective mechanisms mediated by Nrf2 against kidney injury, novel therapeutic strategies to induce Nrf2 activation, and the status of ongoing clinical trials targeting Nrf2 in renal diseases.
RESUMEN
Microglia controls the immune system response in the brain. Specifically, the activation and dysregulation of the NLRP3 inflammasome is responsible for the initiation of the inflammatory process through IL-1ß and IL-18 release. In this work, we have focused on studying the effect of melatonin on the regulation of the NLRP3 inflammasome through α7 nicotinic receptor (nAChR) and its relationship with autophagy. For this purpose, we have used pharmacological and genetic approaches in lipopolysaccharide (LPS)-induced inflammation models in both in vitro and in vivo models. In the BV2 cell line, LPS inhibited autophagy, which increased NLRP3 protein levels. However, melatonin promoted an increase in the autophagic flux. Treatment of glial cultures from wild-type (WT) mice with LPS followed by extracellular adenosine triphosphate (ATP) produced the release of IL-1ß, which was reversed by melatonin pretreatment. In cultures from α7 nAChR knock-out (KO) mice, melatonin did not reduce IL-1ß release. Furthermore, melatonin decreased the expression of inflammasome components and reactive oxygen species (ROS) induced by LPS; co-incubation of melatonin with α-bungarotoxin (α-bgt) or luzindole abolished the anti-inflammatory and antioxidant effects. In vivo, melatonin reverted LPS-induced cognitive decline, reduced NLRP3 levels and promoted autophagic flux in the hippocampi of WT mice, whereas in α7 nAChR KO mice melatonin effect was not observed. These results suggest that melatonin may modulate the complex interplay between α7 nAChR and autophagy signaling.
RESUMEN
Microglia (MG) are the first cells to react to the abnormal incoming signals that follow an injury of sensory nerves and play a critical role in the development and maintenance of neuropathic pain, a common sequel of nerve injuries. Here we present population data on cell number, soma size, and length of processes of MG in the caudal division of the spinal trigeminal nucleus (Sp5C) in control mice and at the peak of microgliosis (7 days) following unilateral transection of the infraorbital nerve (IoN). The study is performed combining several bias- and assumption-free imaging and stereological approaches with different immunolabeling procedures, with the objective of tackling some hard problems that often hinder proper execution of MG morphometric studies. Our approach may easily be applied to low-density MG populations, but also works, with limited biases, in territories where MG cell bodies and processes form dense meshworks. In controls, and contralaterally to the deafferented side, MG cell body size and shape and branching pattern matched well the descriptions of "resting" or "surveillant" MG described elsewhere, with only moderate intersubject variability. On the superficial laminae of the deafferented side, however, MG displayed on average larger somata and remarkable diversity in shape. The number of cells and the length of MG processes per mm3 increased 5 and 2.5 times, respectively, indicating a net 50% decrease in the mean length of processes per cell. By using specific immunolabeling and cell sorting of vascular macrophages, we found only a negligible fraction of these cells in Sp5C, with no differences between controls and deafferented animals, suggesting that blood-borne monocytes play at most a very limited role in the microgliosis occurring following sensory nerve deafferentation. In sum, here we present reliable morphometric data on MG in control and deafferented trigeminal nuclei using efficient methods that we propose may equally be applied to any morphometric population analysis of these cells under different physiological or pathological conditions.
RESUMEN
BACKGROUND AND PURPOSE: Ischaemic stroke is a leading cause of death, disability, and a high unmet medical need. Post-reperfusion inflammation and an up-regulation of toll-like receptor 4 (TLR4), an upstream sensor of innate immunity, are associated with poor outcome in stroke patients. Here, we identified the therapeutic effect of targeting the LPS/TLR4 signal transduction pathway. EXPERIMENTAL APPROACH: We tested the effect of the TLR4 inhibitor, eritoran (E5564) in different in vitro ischaemia-related models: human organotypic cortex culture, rat organotypic hippocampal cultures, and primary mixed glia cultures. We explored the therapeutic window of E5564 in the transient middle cerebral artery occlusion model of cerebral ischaemia in mice. KEY RESULTS: In vivo, administration of E5564 1 and 4 hr post-ischaemia reduced the expression of different pro-inflammatory chemokines and cytokines, infarct volume, blood-brain barrier breakdown, and improved neuromotor function, an important clinically relevant outcome. In the human organotypic cortex culture, E5564 reduced the activation of microglia and ROS production evoked by LPS. CONCLUSION AND IMPLICATIONS: TLR4 signalling has a causal role in the inflammation associated with a poor post-stroke outcome. Importantly, its inhibition by eritoran (E5564) provides neuroprotection both in vitro and in vivo, including in human tissue, suggesting a promising new therapeutic approach for ischaemic stroke.
Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Lípido A/análogos & derivados , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Receptor Toll-Like 4/antagonistas & inhibidores , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatología , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Lípido A/farmacología , Lípido A/uso terapéutico , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Fenotipo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/metabolismoRESUMEN
New tritarget small molecules combining Ca2+ channels blockade, cholinesterase, and H3 receptor inhibition were obtained by multicomponent synthesis. Compound 3p has been identified as a very promising lead, showing good Ca2+ channels blockade activity (IC50 = 21 ± 1 µM), potent affinity against hH3R (Ki = 565 ± 62 nM), a moderate but selective hBuChE inhibition (IC50 = 7.83 ± 0.10 µM), strong antioxidant power (3.6 TE), and ability to restore cognitive impairment induced by lipopolysaccharide.
Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Bloqueadores de los Canales de Calcio/farmacología , Inhibidores de la Colinesterasa/farmacología , Fármacos Neuroprotectores/farmacología , Receptores Histamínicos H3/química , Bibliotecas de Moléculas Pequeñas/farmacología , Vasodilatadores/farmacología , Enfermedad de Alzheimer/metabolismo , Animales , Bloqueadores de los Canales de Calcio/química , Inhibidores de la Colinesterasa/química , Humanos , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Ratones , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Fármacos Neuroprotectores/química , Bibliotecas de Moléculas Pequeñas/química , Células Tumorales Cultivadas , Vasodilatadores/químicaRESUMEN
Haemoglobin and myoglobin are haem proteins that play a key role as they help transport oxygen around the body. However, because of their chemical structure, these molecules can exert harmful effects when they are released massively into the bloodstream, as reported in certain pathological conditions associated with rhabdomyolysis or intravascular haemolysis. Once in the plasma, these haem proteins can be filtered and can accumulate in the kidney, where they become cytotoxic, particularly for the tubular epithelium, inducing acute kidney failure and chronic kidney disease. In this review, we will analyse the different pathological contexts that lead to the renal accumulation of these haem proteins, their relation to both acute and chronic loss of renal function, the pathophysiological mechanisms that cause adverse effects and the defence systems that counteract such actions. Finally, we will describe the different treatments currently used and present new therapeutic options based on the identification of new cellular and molecular targets, with particular emphasis on the numerous clinical trials that are currently ongoing.
Asunto(s)
Lesión Renal Aguda/etiología , Hemoproteínas/metabolismo , Riñón/metabolismo , Insuficiencia Renal Crónica/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Lesión Renal Aguda/terapia , Proteínas Sanguíneas/fisiología , Ensayos Clínicos como Asunto , Drogas en Investigación/uso terapéutico , Hemólisis , Humanos , Quelantes del Hierro/uso terapéutico , Túbulos Renales/metabolismo , Túbulos Renales/patología , Estrés Oxidativo , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/terapia , Rabdomiólisis/complicaciones , Rabdomiólisis/metabolismo , Bicarbonato de Sodio/uso terapéutico , Terapias en InvestigaciónRESUMEN
BACKGROUND: Renal disease is a serious health problem, with increasing incidence and prevalence. Oxidative stress and inflammation play a key role in the pathogenesis and progression of renal disease. Therefore, therapeutic approaches to decrease oxidative stress should be of interest. OBJECTIVE: This review aims to provide a comprehensive and updated overview of the protective mechanisms mediated by Nrf2 (nuclear factor erythroid 2-related factor 2), a description of novel compounds that target Nrf2, its effectiveness to prevent renal disease and the on-going clinical trials for this pathological condition. METHODS: We undertook a structured search of bibliographic databases for peer-reviewed research in literature about Nrf2 activators and renal disease. RESULTS: The transcription factor Nrf2 is an emerging regulator of cellular resistance to oxidants and inflammation. Nrf2 controls the basal and induced expression of a couple of cytoprotective and antiinflammatory genes that regulate the physiological and pathophysiological outcomes of oxidant exposure. We have analyzed numerous findings showing that Nrf2 induction protects against oxidative stress and modulates inflammation in acute kidney injury and chronic kidney disease progression. However, few clinical trials have been performed in humans. Recent studies suggested that renoprotective effects of Nrf2 activation are observed at low doses, whereas harmful effects appear at higher concentrations. CONCLUSION: The findings of this review confirm that novel studies are necessary to address whether Nrf2-targeting may be a safe therapeutic approach to decrease renal disease progression in humans.