Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Molecules ; 29(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731526

RESUMEN

Thiochalcones undergo cycloaddition reactions in THF solution at 60 °C with the synthetically unexplored 1-phenyl-4H-phosphinin-4-one 1-oxide in a highly regio- and stereoselective manner, yielding hitherto unknown bicyclic P,S-heterocycles containing fused thiopyran and phosphinine rings. The stereochemical structures of two of the obtained (4+2)-cycloadducts were unambiguously assigned by means of the X-ray single-crystal analysis. Based on these assignments, a concerted mechanism of the hetero-Diels-Alder reaction via the preferred endo approach of the heterodiene from the less hindered P=O side of the phosphininone molecule is postulated to explain the established rac-(4RS,8SR,9SR,10SR)-configured (4+2)-cycloadducts isolated as major products.

2.
Chemistry ; 29(33): e202300806, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-36988029

RESUMEN

By exploiting the unique reactivity of ethynyl-phosphonites we obtain novel P(V)-containing five-membered heterocycles via (3+2)-cyclization reactions with aldehydes or cycloaliphatic thioketones in satisfactory to excellent yields. Whereas reactions with thioketones to yield 1,3-thiaphospholes-3-oxides occur smoothly at room temperature with equimolar amounts of the starting materials in absence of any catalyst, the analogous conversions with aldehydes to generate 3-oxides of 1,3-oxaphospholes require addition of triethylamine as a base. We postulate a step-wise (3+2)-cyclization mechanism for the formation of the 1,3-thiaphosphole ring based on DFT quantum chemical calculations. With this study, we introduce new cyclization reactions originating from unsaturated phosphonites as central synthetic building blocks to yield previously inaccessible stable phosphorus-containing heterocycles with unexplored potential for the molecular sciences.


Asunto(s)
Aldehídos , Tionas , Aldehídos/química , Ciclización
3.
J Org Chem ; 88(4): 2132-2139, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36735741

RESUMEN

The present study investigates the effect of the substitution of salicylaldehyde hydrazones at two selected positions, i.e., the para-position with regard to the proton-donating and proton-accepting centers forming the hydrogen bridge. A detailed analysis of structural data obtained by theoretical approaches and X-ray experiments, together with original resonance Hammett's constants, indicates that the strength of the intramolecular hydrogen bonding present in salicylaldehyde hydrazones can be selectively modulated by substitution of the parent molecular system with the chemical group of known π-electron-donating or -accepting properties. Our findings provide an insight into planning synthesis pathways for salicylaldehyde hydrazone species and predicting their result with regard to their H-bonding and related physical and chemical properties.

4.
Molecules ; 28(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37959767

RESUMEN

The in situ-generated N-aryl nitrile imines derived from trifluoroacetonitrile smoothly undergo (3+2)-cycloadditions onto the enone fragment of the levoglucosenone molecule, yielding the corresponding, five-membered cycloadducts. In contrast to the 'classic' C(Ph),N(Ph) nitrile imine, reactions with fluorinated C(CF3),N(Ar) analogues lead to stable pyrazolines in a chemo- and stereoselective manner. Based on the result of X-ray single crystal diffraction analysis, their structures were established as exo-cycloadducts with the location of the N-Ar terminus of the 1,3-dipole at the α-position of the enone moiety. The DFT computation demonstrated that the observed reaction pathway results from the strong dominance of kinetic control over thermodynamic control.

5.
Molecules ; 28(18)2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37764326

RESUMEN

Leonurus sibiricus L. has great ethnobotanical and ethnomedicinal significance. This study aimed to assess the antioxidant and anti-inflammatory properties of Leonurus sibiricus L. transgenic roots extracts transformed by Rhizobium rhizogenes, with and without the AtPAP1 transcriptional factor. The study determined the total phenolic and flavonoid contents, as well as in vitro antioxidant assays, including hydrogen peroxide and nitric oxide scavenging activity. In addition, in silico computational studies and molecular docking were conducted to evaluate the antioxidant and anti-inflammatory potential of the identified compounds. The ligands were docked to NADPH oxidase, cyclooxygenase 2,5-lipoxygenase, inducible nitric synthase and xanthine oxidase: enzymes involved in the inflammatory process. The total phenolic and flavonoid contents ranged from 85.3 ± 0.35 to 57.4 ± 0.15 mg/g GAE/g and 25.6 ± 0.42 to 18.2 ± 0.44 mg/g QUE/g in hairy root extracts with and without AtPAP1, respectively. H2O2 scavenging activity (IC50) was found to be 29.3 µg/mL (with AtPAP1) and 37.5 µg/mL (without AtPAP1 transcriptional factor), and NO scavenging activity (IC50) was 48.0 µg/mL (with AtPAP1) and 68.8 µg/mL (without AtPAP1 transcriptional factor). Leonurus sibiricus L. transformed root extracts, both with and without AtPAP1, are a source of phytochemicals belonging to different classes of molecules, such as flavonoids (catechin and rutin), phenolic compounds (caffeic acid, coumaric acid, chlorogenic acid, ferulic acid) and phenylpropanoid (verbascoside). Among the radicals formed after H removal from the different -OH positions, the lowest bond dissociation enthalpy was observed for rutin (4'-OH). Rutin was found to bind with cyclooxygenase 2, inducible nitric synthases and xanthine oxidase, whereas chlorogenic acid demonstrated optimal binding with 5-lipoxygenase. Therefore, it appears that the Leonurus sibiricus L. transformed root extract, both with and without the AtPAP1 transcriptional factor, may serve as a potential source of active components with antioxidant and anti-inflammatory potential; however, the extract containing AtPAP1 demonstrates superior activities. These properties could be beneficial for human health.


Asunto(s)
Antioxidantes , Leonurus , Humanos , Antioxidantes/farmacología , Araquidonato 5-Lipooxigenasa , Ciclooxigenasa 2 , Peróxido de Hidrógeno , Simulación del Acoplamiento Molecular , Xantina Oxidasa , Flavonoides/farmacología , Rutina , Antiinflamatorios/farmacología , Ácido Clorogénico , Extractos Vegetales/farmacología
6.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499046

RESUMEN

Researchers carrying out calculations using the DFT method face the problem of the correct choice of the exchange-correlation functional to describe the quantities they are interested in. This article deals with benchmark calculations aimed at testing various exchange-correlation functionals in terms of a reliable description of the electron density distribution in molecules. For this purpose, 30 functionals representing all rungs of Jacob's Ladder are selected and then the values of some QTAIM-based parameters are compared with their reference equivalents obtained at the CCSD/aug-cc-pVTZ level of theory. The presented results show that the DFT method undoubtedly has the greatest problems with a reliable description of the electron density distribution in multiple strongly polar bonds, such as C=O, and bonds associated with large electron charge delocalization. The performance of the tested functionals turned out to be unsystematic. Nevertheless, in terms of a reliable general description of QTAIM-based parameters, the M11, SVWN, BHHLYP, M06-HF, and, to a slightly lesser extent, also BLYP, B3LYP, and X3LYP functionals turned out to be the worst. It is alarming to find the most popular B3LYP functional in this group. On the other hand, in the case of the electron density at the bond critical point, being the most important QTAIM-based parameter, the M06-HF functional is especially discouraged due to the very poor description of the C=O bond. On the contrary, the VSXC, M06-L, SOGGA11-X, M06-2X, MN12-SX, and, to a slightly lesser extent, also TPSS, TPSSh, and B1B95 perform well in this respect. Particularly noteworthy is the overwhelming performance of double hybrids in terms of reliable values of bond delocalization indices. The results show that there is no clear improvement in the reliability of describing the electron density distribution with climbing Jacob's Ladder, as top-ranked double hybrids are also, in some cases, able to produce poor values compared to CCSD.


Asunto(s)
Electrones , Reproducibilidad de los Resultados
7.
Int J Mol Sci ; 23(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35008659

RESUMEN

In the presented research, we address the original concept of resonance-assisted hydrogen bonding (RAHB) by means of the many-body interaction approach and electron density delocalization analysis. The investigated molecular patterns of RAHBs are open chains consisting of two to six molecules in which the intermolecular hydrogen bond stabilizes the complex. Non-RAHB counterparts are considered to be reference systems. The results show the influence of the neighbour monomers on the unsaturated chains in terms of the many-body interaction energy contribution. Exploring the relation between the energy parameters and the growing number of molecules in the chain, we give an explicit extrapolation of the interaction energy and its components in the infinite chain. Electron delocalization within chain motifs has been analysed from three different points of view: three-body delocalization between C=C-C, two-body hydrogen bond delocalization indices and also between fragments (monomers). A many-body contribution to the interaction energy as well as electron density helps to establish the assistance of resonance in the strength of hydrogen bonds upon the formation of the present molecular chains. The direct relation between interaction energy and delocalization supports the original concept, and refutes some of the criticisms of the RAHB idea.


Asunto(s)
Química Computacional , Electrones , Enlace de Hidrógeno , Modelos Moleculares , Vibración
8.
Beilstein J Org Chem ; 17: 1509-1517, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34285722

RESUMEN

In-situ-generated N-aryl nitrile imines derived from trifluoroacetonitrile efficiently react with polycyclic 1,4-quinones, yielding fused pyrazole derivatives as the exclusive products. The reactions proceed via the initially formed [3 + 2]-cycloadducts, which undergo spontaneous aerial oxidation to give aromatized heterocyclic products. Only for 2,3,5,6-tetramethyl-1,4-benzoquinone, the expected [3 + 2]-cycloadduct exhibited fair stability and could be isolated in moderate yield (53%). The presented method offers a straightforward access to hitherto little known trifluoromethylated polycyclic pyrazoles. All products were isolated as pale colored solids with medium-intensity absorption maxima in the range of 310-340 nm for naphthoquinone-derived products and low-intensity bands in the visible region (≈400 nm) for the anthraquinone series.

9.
Chemphyschem ; 19(5): 590-595, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29372611

RESUMEN

Substituent effects are phenomena which play an important role in organic chemistry, especially when aromatic species are considered. For this class of systems, the question of the interrelation between substituent effect and aromaticity arises. The relationship between aromaticity and substituent effects appears to be of a competitive nature. This work examines changes in aromaticity in para-substituted benzene derivatives exposed to external electric fields of various intensities. Three systems with different substituent electron-accepting/donating properties are studied, namely p-aminophenol, p-nitrobenzonitrile and p-nitrophenol. In these cases, the competitive character between substituent effects and aromaticity is emphasised. It is also shown that aromaticity (and the substituent effect) can be tuned using an external electric field applied to the system.

10.
J Phys Chem A ; 122(24): 5484-5492, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29809012

RESUMEN

The stable model of a double (±)charge-assisted halogen bridge has been built on the basis of searches of the Crystal Structure Database. The model, investigated by DFT theory, consists of quinuclidine-like cation derivatives and a set of simple anions. These charged fragments form halogen-bonded complexes of which the energy of complexation in some cases reaches 100 kcal/mol. Even for such strong interactions, the QTAIM characteristics are similar to those of the more classic, relatively weak halogen bonds. An important effect of complexation is the charge transfer measured by means of QTAIM and NBO. It can also be supposed, on the basis of detailed structural and QTAIM analysis, that the delocalization of the charge in a quinuclidine moiety occurs through space and not necessarily along formal bonds. The analysis of only partially charged and fully neutral counterparts of a double (±)charge-assisted halogen bridge shows significantly weaker bonding, being less than 10 kcal/mol.

11.
J Phys Chem A ; 122(8): 2279-2287, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29378123

RESUMEN

Intramolecular resonance-assisted hydrogen bonds (RAHBs) are stronger than conventional hydrogen bonds (HBs) thanks to the extra stabilization connected with the partial delocalization of the π-electrons within the HB motif containing conjugated formally single and double bonds. When these conjugated bonds are part of an aromatic ring, there is an interplay between resonance-assisted hydrogen bonding and the aromaticity of the ring. The main aim of the present work is to analyze the changes in RAHB strength by substitution in the aromatic ring. For this purpose, we use density functional theory methods to study all possible mono- and disubstitutions in the four free positions of the aromatic ring of o-hydroxybenzaldehyde. As substituents, we consider three π-electron donating groups (EDG: NH2, OH, and F) and three π-electron withdrawing groups (EWG: NO2, NO, and CN). We show that it is possible to tune the HB bond distance in the RAHB by locating different substituents in given positions of the aromatic ring. Indeed, certain combinations of EDG and EWD result in a reduction or increase of the HB distance by up to 0.05 Å. Results found can be explained by considering the existence of a resonance effect of the π-electrons within the HB motif.

12.
Chemphyschem ; 17(4): 474-80, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26732989

RESUMEN

Inspired by the isostructural motif in α-bromoacetophenone oxime crystals, we investigated halogen-halogen bonding in haloamine quartets. Our Kohn-Sham molecular orbital and energy decomposition analysis reveal a synergy that can be traced to a charge-transfer interaction in the halogen-bonded tetramers. The halogen lone-pair orbital on one monomer donates electrons into the unoccupied σ*N-X orbital on the perpendicular N-X bond of the neighboring monomer. This interaction has local σ symmetry. Interestingly, we discovered a second, somewhat weaker donor-acceptor interaction of local π symmetry, which partially counteracts the aforementioned regular σ-symmetric halogen-bonding orbital interaction. The halogen-halogen interaction in haloamines is the first known example of a halogen bond in which back donation takes place. We also find that this cooperativity in halogen bonds results from the reduction of the donor-acceptor orbital-energy gap that occurs every time a monomer is added to the aggregate.

13.
Phys Chem Chem Phys ; 18(36): 25022-25026, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27722452

RESUMEN

The Hellmann-Feynman theorem, when applied to nuclear coordinates in a molecular system, states that Feynman forces, i.e. forces acting on a nucleus in a molecule, are solely of an electrostatic nature. This theorem is described by Slater as "the most powerful" theorem applicable to molecules. However, its possibilities have hardly been harnessed. This work presents the use of the Hellmann-Feynman theorem in conjunction with the partitioning of the molecular space into atoms in the spirit of the quantum theory of atoms in molecules (QTAIM). Homopolar and heteropolar diatomic molecules of varying polarity are studied in the context of Feynman force components, i.e. the components exerted on each nucleus by the other nucleus and by the electron density distributions of each of the atoms. These results are further related to electronegativity differences used in the differentiation between covalent and ionic bond. The approach based on the directions of Feynman force components gives physical fundamentals for covalent vs. ionic bond distinction without referring to the electronegativity concept.

14.
J Org Chem ; 80(18): 9091-101, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26323028

RESUMEN

Local and global π-electron delocalization occurring in planar poly-1,7-[N]calicenes is investigated with use of 10 aromaticity measures based on different physical properties. Systematic change of aromatic character is observed along chains of connected calicene units. Multidimensionality of the aromaticity phenomenon is studied with use of principal component analysis (PCA). The structural characteristics are compared with the properties of the isolated calicene molecule exposed to external electric fields of various intensities. Interrelations between the value of electric field applied and physical properties of the calicene molecule are discussed in the context of calicene unit affected by its surroundings in polycalicene chains. The patterns of global π-electron delocalization are described in graph theory terminology, and interconnections between local and global aromaticity in these systems are established.

15.
Phys Chem Chem Phys ; 17(25): 16375-87, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26051488

RESUMEN

The nature of the NO-bond in the N-oxide group was investigated by means of combined theoretical calculations (including QTAIM and NBO approaches) and statistical analyses of the contents of crystal structure databases. The N-O bond in the N-oxide group should be classified as the NO donating bond with an important contribution of ON back-donation (of the π-electron type, when available). The visualization of the Laplacian of electron density in the region of an oxygen valence sphere suggests the presence of two lone pairs for the imine-N-oxide group (characterized by effective ON back-donation). A detailed bonding analysis performed by means of natural resonance theory indicates that the N→O bond is of an order of magnitude clearly greater than 1. In addition, the stability of the N→O bond in various N-oxides was estimated. The analyses of the hydrogen- and halogen-bonded complexes of the N-oxides reveal strong Lewis basicity of the N-oxide group. The formation of H- and X-bonding leads to N→O bond elongation due to its structural, topological and spectroscopic characteristics. Moreover, in pyridine-N-oxide, the electron-withdrawing -NO2 group additionally stabilizes the N→O bond, whereas the opposite effect can be observed for the electron-donating-NH2 substituent. This is due to a substituent effect on the π-type ON back-donation. As a result, the oxygen atom in pyridine-N-oxide may change its availability during intermolecular interaction formation, as revealed in the interaction energy, which changes by about half of the estimated total interaction energy.

16.
Phys Chem Chem Phys ; 16(10): 4752-63, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24469543

RESUMEN

It was recently postulated that the benzene ring and its 4n + 2 π-electron analogues are resistant to the substituent effect due to the fact that such systems tend to retain their delocalized character. Therefore, the 4n π-electron dicationic form of benzene should appear to be less resistant to the substituent effect, as compared with its parent neutral molecule. For this reason the effect of substitution on the dicationic form of benzene was thoroughly investigated and the consequences of single and double substitution (of para- and meta-type) were assessed by means of several parameters, including various aromaticity indices and the Substituent Effect Stabilization Energy (SESE) parameter. It is shown that, distinct from neutral benzene, its dicationic form is much more sensitive to the substitution. However, the dicationic benzene itself, as a moiety with a significant deficit of electrons, will be considered as a strongly electron-withdrawing centre, thus interacting in a cooperative way with electron-donating substituents and in an anticooperative way with electron-withdrawing substituents. Clear differences between singlet- and triplet-state dicationic forms of benzene were also found. Triplet state structures seem to be significantly more delocalized, and as a consequence less sensitive to the substituent effect than the singlet state structures. Finally, the para- and meta-type substitution was investigated and it was found that the disubstituted dicationic benzene exhibits significantly different behaviour from that of neutral benzene. Although the difference between para- and meta-substitution can be found for dicationic benzene, the mechanism responsible for such an observation is different from that present in neutral benzene. Finally, it is shown how and why double ionization of benzene reduces its aromatic character in the singlet dication whereas aromaticity is essentially conserved in the triplet dication. The above findings highlight that in the case of charged analogues of benzene the aromaticity indices can be misleading and are to be used with great precaution.

17.
J Chem Phys ; 140(4): 044324, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25669540

RESUMEN

A theoretical study of singlet state cations of polycyclic aromatic hydrocarbons is performed. Appropriate symmetry suitable for further calculations is chosen for each of the systems studied. The excitation states of such species are obtained by the time dependent density functional theory (TD-DFT) method. The computations are performed using both Pople and electronic response properties basis sets. The results obtained with the use of different basis sets are compared. The electronic transitions are described and the relationships for the lowest-lying transitions states of different species are found. The properties of in-plane and out-of-plane transitions are also delineated. The TD-DFT results are compared with the experimental data available.

18.
Dalton Trans ; 53(23): 9732-9740, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38775685

RESUMEN

We have found that amines significantly accelerate iodide substitution in CpFe(CO)2I (1) (Cp = η5-cyclopentadienyl) with phosphines and allow the synthesis of new complexes that are not available through reactions carried out without an amine. The reaction of equimolar amounts of 1 and triphenylphosphine in toluene containing DIPA afforded [CpFe(CO)2PPh3]+I- within 5 min at room temperature in 72% yield (90% after 24 h). DIPA and pyrrolidine gave the highest yields of the tested amines. We performed a similar reaction using model bisphosphines 1,3-bis(diphenylphosphino)ethane (dppe) and 1,1'-bis(diphenylphosphino)ferrocene (dppf). The products depended on the reagent ratio and bore the CpFe(CO)2 moiety coordinated to one or two phosphine phosphorus atoms. Chelates [CpFe(CO)(dppe)]+I- (4) and [Cp2Fe2(CO)4(dppe)]2+2I- (5) were formed in 72% and 98% yield, respectively. We also performed the DIPA-catalyzed reaction of 1 with triethyl phosphite and obtained the product of an Michaelis-Arbuzov-like rearrangement, CpFe(CO)2[P(O)(OCH2CH3)2] (11). All complexes were characterized with spectroscopic analysis by NMR, FT-IR, and ESI-MS, and by XRD for three complexes. To clarify the reaction mechanism, we performed theoretical calculations of the intermolecular interactions between 1 and amine molecules. We propose two possible reaction mechanisms to explain the formation of products.

19.
Sci Rep ; 14(1): 5634, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454122

RESUMEN

In these studies, we designed and investigated the potential anticancer activity of five iron(II) cyclopentadienyl complexes bearing different phosphine and phosphite ligands. All complexes were characterized with spectroscopic analysis viz. NMR, FT-IR, ESI-MS, UV-Vis, fluorescence, XRD (for four complexes) and elemental analyses. For biological studies, we used three types of cells-normal peripheral blood mononuclear (PBM) cells, leukemic HL-60 cells and non-small-cell lung cancer A549 cells. We evaluated cell viability and DNA damage after cell incubation with these complexes. We observed that all iron(II) complexes were more cytotoxic for HL-60 cells than for A549 cells. The complex CpFe(CO)(P(OPh)3)(η1-N-maleimidato) 3b was the most cytotoxic with IC50 = 9.09 µM in HL-60 cells, IC50 = 19.16 µM in A549 and IC50 = 5.80 µM in PBM cells. The complex CpFe(CO)(P(Fu)3)(η1-N-maleimidato) 2b was cytotoxic only for both cancer cell lines, with IC50 = 10.03 µM in HL-60 cells and IC50 = 73.54 µM in A549 cells. We also found the genotoxic potential of the complex 2b in both types of cancer cells. However, the complex CpFe(CO)2(η1-N-maleimidato) 1 which we studied previously, was much more genotoxic than complex 2b, especially for A549 cells. The plasmid relaxation assay showed that iron(II) complexes do not induce strand breaks in fully paired ds-DNA. The DNA titration experiment showed no intercalation of complex 2b into DNA. Molecular docking revealed however that complexes CpFe(CO)(PPh3) (η1-N-maleimidato) 2a, 2b, 3b and CpFe(CO)(P(OiPr)3)(η1-N-maleimidato) 3c have the greatest potential to bind to mismatched DNA. Our studies demonstrated that the iron(II) complex 1 and 2b are the most interesting compounds in terms of selective cytotoxic action against cancer cells. However, the cellular mechanism of their anticancer activity requires further research.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Complejos de Coordinación , Neoplasias Pulmonares , Fosfinas , Fosfitos , Humanos , Simulación del Acoplamiento Molecular , Complejos de Coordinación/química , Hierro , Leucocitos Mononucleares/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , ADN/metabolismo , Maleimidas , Compuestos Ferrosos/farmacología , Antineoplásicos/química , Ligandos , Línea Celular Tumoral
20.
Carbohydr Res ; 529: 108844, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37210942

RESUMEN

Levoglucosenone (LGO) and structurally similar exo-cyclic enones derived from cyrene (dihydrolevoglucosenone) react with tropothione following the higher-order [8 + 2]-cycloaddition pathway. Reactions were performed at room temperature in CH2Cl2 solutions in absence of any activating reagent. Whereas reaction of tropothione with LGO occurred with complete stereoselectivity, leading to a single, sterically favored exo cycloadduct, identified as polycylic thiophene derivative, reactions performed with exo-cyclic enones yielded in some instances mixtures of two isomeric exo and endo cycloadducts, derived from spiro-tetrahydrothiophene as major and minor components, respectively, of the studied reaction mixtures. Exo and endo [8 + 2] cycloadducts differ in absolute configuration at the newly created chiral centers. Structures of exo and endo cycloadducts were confirmed by single crystal X-ray diffraction analysis.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Estereoisomerismo , Reacción de Cicloadición , Isomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA