Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hear Res ; 441: 108919, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043402

RESUMEN

Auditory neuropathy spectrum disorder (ANSD) is a hearing impairment involving disruptions to inner hair cells (IHCs), ribbon synapses, spiral ganglion neurons (SGNs), and/or the auditory nerve itself. The outcomes of cochlear implants (CI) for ANSD are variable and dependent on the location of lesion sites. Discovering a potential therapeutic agent for ANSD remains an urgent requirement. Here, 293T stable transfection cell lines and patient induced pluripotent stem cells (iPSCs)-derived auditory neurons carrying the apoptosis inducing factor (AIF) p.R422Q variant were used to pursue a therapeutic regent for ANSD. Nicotinamide adenine dinucleotide (NADH) is a main electron donor in the electron transport chain (ETC). In 293T stable transfection cells with the p.R422Q variant, NADH treatment improved AIF dimerization, rescued mitochondrial dysfunctions, and decreased cell apoptosis. The effects of NADH were further confirmed in patient iPSCs-derived neurons. The relative level of AIF dimers was increased to 150.7 % (P = 0.026) from 59.2 % in patient-neurons upon NADH treatment. Such increased AIF dimerization promoted the mitochondrial import of coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4), which further restored mitochondrial functions. Similarly, the content of mitochondrial calcium (mCa2+) was downregulated from 136.7 % to 102.3 % (P = 0.0024) in patient-neurons upon NADH treatment. Such decreased mCa2+ levels inhibited calpain activity, ultimately reducing the percentage of apoptotic cells from 30.5 % to 21.1 % (P = 0.021). We also compared the therapeutic effects of gene correction and NADH treatment on hereditary ANSD. NADH treatment had comparable restorative effects on functions of ANSD patient-specific cells to that of gene correction. Our findings offer evidence of the molecular mechanisms of ANSD and introduce NADH as a potential therapeutic agent for ANSD therapy.


Asunto(s)
Factor Inductor de la Apoptosis , Apoptosis , Pérdida Auditiva Central , NAD , Células Receptoras Sensoriales , Pérdida Auditiva Central/genética , Pérdida Auditiva Central/metabolismo , Pérdida Auditiva Central/fisiopatología , Apoptosis/efectos de los fármacos , NAD/farmacología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Dimerización , Mitocondrias/efectos de los fármacos , Células HEK293 , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Calpaína/metabolismo , Activación Enzimática/efectos de los fármacos , Genotipo , Humanos , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo
2.
J Zhejiang Univ Sci B ; 24(2): 172-184, 2023 Feb 15.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-36751702

RESUMEN

Auditory neuropathy spectrum disorder (ANSD) represents a variety of sensorineural deafness conditions characterized by abnormal inner hair cells and/or auditory nerve function, but with the preservation of outer hair cell function. ANSD represents up to 15% of individuals with hearing impairments. Through mutation screening, bioinformatic analysis and expression studies, we have previously identified several apoptosis-inducing factor (AIF) mitochondria-associated 1 (AIFM1) variants in ANSD families and in some other sporadic cases. Here, to elucidate the pathogenic mechanisms underlying each AIFM1 variant, we generated AIF-null cells using the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system and constructed AIF-wild type (WT) and AIF-mutant (mut) (p.|T260A, p.|R422W, and p.|R451Q) stable transfection cell lines. We then analyzed AIF structure, coenzyme-binding affinity, apoptosis, and other aspects. Results revealed that these variants resulted in impaired dimerization, compromising AIF function. The reduction reaction of AIF variants had proceeded slower than that of AIF-WT. The average levels of AIF dimerization in AIF variant cells were only 34.5%|‒|49.7% of that of AIF-WT cells, resulting in caspase-independent apoptosis. The average percentage of apoptotic cells in the variants was 12.3%|‒|17.9%, which was significantly higher than that (6.9%|‒|7.4%) in controls. However, nicotinamide adenine dinucleotide (NADH) treatment promoted the reduction of apoptosis by rescuing AIF dimerization in AIF variant cells. Our findings show that the impairment of AIF dimerization by AIFM1 variants causes apoptosis contributing to ANSD, and introduce NADH as a potential drug for ANSD treatment. Our results help elucidate the mechanisms of ANSD and may lead to the provision of novel therapies.


Asunto(s)
Factor Inductor de la Apoptosis , NAD , Humanos , Factor Inductor de la Apoptosis/química , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , NAD/metabolismo , Dimerización , Apoptosis
3.
Cell Death Dis ; 14(6): 375, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365177

RESUMEN

Auditory neuropathy spectrum disorder (ANSD) is a hearing impairment caused by dysfunction of inner hair cells, ribbon synapses, spiral ganglion neurons and/or the auditory nerve itself. Approximately 1/7000 newborns have abnormal auditory nerve function, accounting for 10%-14% of cases of permanent hearing loss in children. Although we previously identified the AIFM1 c.1265 G > A variant to be associated with ANSD, the mechanism by which ANSD is associated with AIFM1 is poorly understood. We generated induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells (PBMCs) via nucleofection with episomal plasmids. The patient-specific iPSCs were edited via CRISPR/Cas9 technology to generate gene-corrected isogenic iPSCs. These iPSCs were further differentiated into neurons via neural stem cells (NSCs). The pathogenic mechanism was explored in these neurons. In patient cells (PBMCs, iPSCs, and neurons), the AIFM1 c.1265 G > A variant caused a novel splicing variant (c.1267-1305del), resulting in AIF p.R422Q and p.423-435del proteins, which impaired AIF dimerization. Such impaired AIF dimerization then weakened the interaction between AIF and coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4). On the one hand, the mitochondrial import of ETC complex subunits was inhibited, subsequently leading to an increased ADP/ATP ratio and elevated ROS levels. On the other hand, MICU1-MICU2 heterodimerization was impaired, leading to mCa2+ overload. Calpain was activated by mCa2+ and subsequently cleaved AIF for its translocation into the nucleus, ultimately resulting in caspase-independent apoptosis. Interestingly, correction of the AIFM1 variant significantly restored the structure and function of AIF, further improving the physiological state of patient-specific iPSC-derived neurons. This study demonstrates that the AIFM1 variant is one of the molecular bases of ANSD. Mitochondrial dysfunction, especially mCa2+ overload, plays a prominent role in ANSD associated with AIFM1. Our findings help elucidate the mechanism of ANSD and may lead to the provision of novel therapies.


Asunto(s)
Factor Inductor de la Apoptosis , Calcio , Células Madre Pluripotentes Inducidas , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Niño , Humanos , Recién Nacido , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , Calcio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo
4.
Mitochondrion ; 46: 313-320, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30196098

RESUMEN

Hypertrophic cardiomyopathy (HCM), affecting approximately 1 in 500 in the general population, is the most prominent cause of sudden heart disease-related mortality in the young. Mitochondrial DNA (mtDNA) mutations are among the primary causes of HCM. We previously identified a novel m.2336T>C homoplasmic mutation in the mitochondrial 16S rRNA gene (MT-RNR2) in a Chinese maternally inherited HCM family. However, the molecular mechanisms by which m.2336T>C mutation contributes to HCM remain elusive. Here we generated transferring mitochondria cell lines (cybrids) with a constant nuclear background by transferring mitochondria from immortalized lymphoblastoid cell lines carrying the HCM-associated m.2336T>C mutation into human mtDNA-less (ρ°) cells. Functional assays showed a decreased stability for 16S rRNA and the steady-state levels of its binding proteins in the mutant cybrids. This mutation impaired the mitochondrial translation capacity and resulted in many mitochondrial dysfunctions, including elevation of ROS generation, reduction of ATP production and impairment of mitochondrial membrane potential. Moreover, the mutant cybrids had poor physiological status and decreased survival ability. These results confirm that the m.2336T>C mutation leads to mitochondrial dysfunction and strongly suggest that this mutation may play a role in the pathogenesis of HCM.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , ADN Mitocondrial/genética , Mitocondrias/patología , Mutación Puntual , ARN Ribosómico 16S/genética , Supervivencia Celular , Metabolismo Energético , Salud de la Familia , Humanos , Mitocondrias/genética , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Ribosómico 16S/metabolismo , Proteínas de Unión al ARN/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Stem Cell Reports ; 10(3): 808-821, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29456182

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most common cause of sudden cardiac death in young individuals. A potential role of mtDNA mutations in HCM is known. However, the underlying molecular mechanisms linking mtDNA mutations to HCM remain poorly understood due to lack of cell and animal models. Here, we generated induced pluripotent stem cell-derived cardiomyocytes (HCM-iPSC-CMs) from human patients in a maternally inherited HCM family who carry the m.2336T>C mutation in the mitochondrial 16S rRNA gene (MT-RNR2). The results showed that the m.2336T>C mutation resulted in mitochondrial dysfunctions and ultrastructure defects by decreasing the stability of 16S rRNA, which led to reduced levels of mitochondrial proteins. The ATP/ADP ratio and mitochondrial membrane potential were also reduced, thereby elevating the intracellular Ca2+ concentration, which was associated with numerous HCM-specific electrophysiological abnormalities. Our findings therefore provide an innovative insight into the pathogenesis of maternally inherited HCM.


Asunto(s)
Cardiomiopatía Hipertrófica/patología , Células Madre Pluripotentes Inducidas/patología , Mitocondrias/patología , Proteínas Mitocondriales/genética , Miocitos Cardíacos/patología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Fenómenos Electrofisiológicos/fisiología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Potencial de la Membrana Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación/genética , Miocitos Cardíacos/metabolismo , ARN Ribosómico 16S/genética
6.
Methods Mol Biol ; 1353: 323-42, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25646615

RESUMEN

Mitochondrial disease is a group of disorders caused by dysfunctional mitochondria, of which the mutation in the mitochondrial DNA is one of the primary factors. However, the molecular pathogenesis of mitochondrial diseases remains poorly understood due to lack of cell models. Patient-specific induced pluripotent stem cells (iPS cells or iPSCs) are originated from individuals suffering different diseases but carrying unchanged disease causing gene. Therefore, patient-specific iPS cells can be used as excellent cell models to elucidate the mechanisms underlying mitochondrial diseases. Here we present a detailed protocol for generating iPS cells from urine cells and fibroblasts for instance, as well as a series of characterizations.


Asunto(s)
Reprogramación Celular , ADN Mitocondrial/genética , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , Enfermedades Mitocondriales/patología , Neuronas/citología , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Dermis/citología , Dermis/metabolismo , Cuerpos Embrioides/citología , Cuerpos Embrioides/efectos de los fármacos , Cuerpos Embrioides/metabolismo , Células Nutrientes/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Cultivo Primario de Células , Retroviridae/genética , Teratoma/genética , Teratoma/metabolismo , Teratoma/patología , Orina/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA