Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Brief Bioinform ; 24(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37150785

RESUMEN

A-to-I editing is the most prevalent RNA editing event, which refers to the change of adenosine (A) bases to inosine (I) bases in double-stranded RNAs. Several studies have revealed that A-to-I editing can regulate cellular processes and is associated with various human diseases. Therefore, accurate identification of A-to-I editing sites is crucial for understanding RNA-level (i.e. transcriptional) modifications and their potential roles in molecular functions. To date, various computational approaches for A-to-I editing site identification have been developed; however, their performance is still unsatisfactory and needs further improvement. In this study, we developed a novel stacked-ensemble learning model, ATTIC (A-To-I ediTing predICtor), to accurately identify A-to-I editing sites across three species, including Homo sapiens, Mus musculus and Drosophila melanogaster. We first comprehensively evaluated 37 RNA sequence-derived features combined with 14 popular machine learning algorithms. Then, we selected the optimal base models to build a series of stacked ensemble models. The final ATTIC framework was developed based on the optimal models improved by the feature selection strategy for specific species. Extensive cross-validation and independent tests illustrate that ATTIC outperforms state-of-the-art tools for predicting A-to-I editing sites. We also developed a web server for ATTIC, which is publicly available at http://web.unimelb-bioinfortools.cloud.edu.au/ATTIC/. We anticipate that ATTIC can be utilized as a useful tool to accelerate the identification of A-to-I RNA editing events and help characterize their roles in post-transcriptional regulation.


Asunto(s)
Drosophila melanogaster , Edición de ARN , Animales , Ratones , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , ARN/genética , Adenosina/genética , Adenosina/metabolismo , Inosina/genética , Inosina/metabolismo
2.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34729589

RESUMEN

Conventional supervised binary classification algorithms have been widely applied to address significant research questions using biological and biomedical data. This classification scheme requires two fully labeled classes of data (e.g. positive and negative samples) to train a classification model. However, in many bioinformatics applications, labeling data is laborious, and the negative samples might be potentially mislabeled due to the limited sensitivity of the experimental equipment. The positive unlabeled (PU) learning scheme was therefore proposed to enable the classifier to learn directly from limited positive samples and a large number of unlabeled samples (i.e. a mixture of positive or negative samples). To date, several PU learning algorithms have been developed to address various biological questions, such as sequence identification, functional site characterization and interaction prediction. In this paper, we revisit a collection of 29 state-of-the-art PU learning bioinformatic applications to address various biological questions. Various important aspects are extensively discussed, including PU learning methodology, biological application, classifier design and evaluation strategy. We also comment on the existing issues of PU learning and offer our perspectives for the future development of PU learning applications. We anticipate that our work serves as an instrumental guideline for a better understanding of the PU learning framework in bioinformatics and further developing next-generation PU learning frameworks for critical biological applications.


Asunto(s)
Algoritmos , Biología Computacional , Biología Computacional/métodos , Aprendizaje Automático Supervisado
3.
Cancer Sci ; 114(11): 4445-4458, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37681349

RESUMEN

Sperm-associated antigen 6 (SPAG6) has been identified as an oncogene or tumor suppressor in various types of human cancer. However, the role of SPAG6 in BCR::ABL1 negative myeloproliferative neoplasms (MPNs) remains unclear. Herein, we found that SPAG6 was upregulated at the mRNA level in primary MPN cells and MPN-derived leukemia cell lines. The SPAG6 protein was primarily located in the cytoplasm around the nucleus and positively correlated with ß-tubulin expression. In vitro, forced expression of SPAG6 increased cell clone formation and promoted G1 to S cell cycle progression. Downregulation of SPAG6 promoted apoptosis, reduced G1 to S phase transition, and impaired cell proliferation and cytokine release accompanied by downregulated signal transducer and activator of transcription 1 (STAT1) expression. Furthermore, the inhibitory effect of interferon-α (INF-α) on the primary MPN cells with high SPAG6 expression was decreased. Downregulation of SPAG6 enhanced STAT1 induction, thus enhancing the proapoptotic and cell cycle arrest effects of INF-α both in vitro and in vivo. Finally, a decrease in SPAG6 protein expression was noted when the STAT1 signaling was blocked. Chromatin immunoprecipitation assays indicated that STAT1 protein could bind to the SPAG6 promoter, while the dual-luciferase reporter assay indicated that STAT1 could promote the expression of SPAG6. Our results substantiate the relationship between upregulated SPAG6, increased STAT1, and reduced sensitivity to INF-α response in MPN.


Asunto(s)
Interferón-alfa , Neoplasias , Humanos , Interferón-alfa/farmacología , Interferón-alfa/genética , Proteínas/metabolismo , Transducción de Señal/genética , Genes Supresores de Tumor , Regiones Promotoras Genéticas , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Neoplasias/genética , Proteínas de Microtúbulos/genética , Proteínas de Microtúbulos/metabolismo
4.
Expert Syst Appl ; 213: 118841, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36157791

RESUMEN

The outbreak of COVID-19 brings almost the biggest explosions of scientific literature ever. Facing such volume literature, it is hard for researches to find desired citation when carrying out COVID-19 related research, especially for junior researchers. This paper presents a novel neural network based method, called citation relational BERT with heterogeneous deep graph convolutional network (CRB-HDGCN), for COVID-19 inline citation recommendation task. The CRB-HDGCN contains two main stages. The first stage is to enhance the representation learning of BERT model for COVID-19 inline citation recommendation task through CRB. To achieve the above goal, an augmented citation sentence corpus, which replaces the citation placeholder with the title of the cited papers, is used to lightly retrain BERT model. In addition, we extract three types of sentence pair according citation relation, and establish sentence prediction tasks to further fine-tune the BERT model. The second stage is to learn effective dense vector of nodes among COVID-19 bibliographic graph through HDGCN. The HDGCN contains four layers which are essentially all sub neural networks. The first layer is initial embedding layer which generates initial input vectors with fixed size through CRB and a multilayer perceptron. The second layer is a heterogeneous graph convolutional layer. In this layer, we expand traditional homogeneous graph convolutional network into heterogeneous by subtly adding heterogeneous nodes and relations. The third layer is a deep attention layer. This layer uses trainable project vectors to reweight the node importance simultaneously according to both node types and convolution layers, which further promotes the performance of learnt node vectors. The last decoder layer recovers the graph structure and let the whole network trainable. The recommendation is finally achieved by integrating the high performance heterogeneous vectors learnt from CRB-HDGCN with the query vectors. We conduct experiments on the CORD-19 and LitCovid datasets. The results show that compared with the second best method CO-Search, CRB-HDGCN improves MAP, MRR, P@100 and R@100 with 21.8%, 22.7%, 37.6% and 21.2% on CORD-19, and 29.1%, 25.9%, 15.3% and 11.3% on LitCovid, respectively.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38865232

RESUMEN

The Type III Secretion Systems (T3SSs) play a pivotal role in host-pathogen interactions by mediating the secretion of type III secretion system effectors (T3SEs) into host cells. These T3SEs mimic host cell protein functions, influencing interactions between Gram-negative bacterial pathogens and their hosts. Identifying T3SEs is essential in biomedical research for comprehending bacterial pathogenesis and its implications on human cells. This study presents EDIFIER, a novel multi-channel model designed for accurate T3SE prediction. It incorporates a graph structural channel, utilizing graph convolutional networks (GCN) to capture protein 3D structural features and a sequence channel based on the ProteinBERT pre-trained model to extract the sequence context features of T3SEs. Rigorous benchmarking tests, including ablation studies and comparative analysis, validate that EDIFIER outperforms current state-of-the-art tools in T3SE prediction. To enhance EDIFIER's accessibility to the broader scientific community, we developed a webserver that is publicly accessible at http://edifier.unimelb-biotools.cloud.edu.au/. We anticipate EDIFIER will contribute to the field by providing reliable T3SE predictions, thereby advancing our understanding of host-pathogen dynamics.

6.
Neural Netw ; 176: 106341, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38692189

RESUMEN

The great learning ability of deep learning facilitates us to comprehend the real physical world, making learning to simulate complicated particle systems a promising endeavour both in academia and industry. However, the complex laws of the physical world pose significant challenges to the learning based simulations, such as the varying spatial dependencies between interacting particles and varying temporal dependencies between particle system states in different time stamps, which dominate particles' interacting behavior and the physical systems' evolution patterns. Existing learning based methods fail to fully account for the complexities, making them unable to yield satisfactory simulations. To better comprehend the complex physical laws, we propose a novel model - Graph Networks with Spatial-Temporal neural Ordinary Differential Equations (GNSTODE) - that characterizes the varying spatial and temporal dependencies in particle systems using a united end-to-end framework. Through training with real-world particle-particle interaction observations, GNSTODE can simulate any possible particle systems with high precisions. We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb, with varying levels of spatial and temporal dependencies. The results show that GNSTODE yields better simulations than state-of-the-art methods, showing that GNSTODE can serve as an effective tool for particle simulation in real-world applications. Our code is made available at https://github.com/Guangsi-Shi/AI-for-physics-GNSTODE.


Asunto(s)
Simulación por Computador , Redes Neurales de la Computación , Gravitación , Física , Aprendizaje Profundo , Algoritmos
7.
Artículo en Inglés | MEDLINE | ID: mdl-38743540

RESUMEN

Conversational recommender systems (CRSs) utilize natural language interactions and dialog history to infer user preferences and provide accurate recommendations. Due to the limited conversation context and background knowledge, existing CRSs rely on external sources such as knowledge graphs (KGs) to enrich the context and model entities based on their interrelations. However, these methods ignore the rich intrinsic information within entities. To address this, we introduce the knowledge-enhanced entity representation learning (KERL) framework, which leverages both the KG and a pretrained language model (PLM) to improve the semantic understanding of entities for CRS. In our KERL framework, entity textual descriptions are encoded via a PLM, while a KG helps reinforce the representation of these entities. We also employ positional encoding to effectively capture the temporal information of entities in a conversation. The enhanced entity representation is then used to develop a recommender component that fuses both entity and contextual representations for more informed recommendations, as well as a dialog component that generates informative entity-related information in the response text. A high-quality KG with aligned entity descriptions is constructed to facilitate this study, namely, the Wiki Movie Knowledge Graph (WikiMKG). The experimental results show that KERL achieves state-of-the-art results in both recommendation and response generation tasks. Our code is publicly available at the link: https://github.com/icedpanda/KERL.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38190667

RESUMEN

Origins of replication sites (ORIs) are crucial genomic regions where DNA replication initiation takes place, playing pivotal roles in fundamental biological processes like cell division, gene expression regulation, and DNA integrity. Accurate identification of ORIs is essential for comprehending cell replication, gene expression, and mutation-related diseases. However, experimental approaches for ORI identification are often expensive and time-consuming, leading to the growing popularity of computational methods. In this study, we present PLANNER (DeeP LeArNiNg prEdictor for ORI), a novel approach for species-specific and cell-specific prediction of eukaryotic ORIs. PLANNER uses the multi-scale ktuple sequences as input and employs the DNABERT pre-training model with transfer learning and ensemble learning strategies to train accurate predictive models. Extensive empirical test results demonstrate that PLANNER achieved superior predictive performance compared to state-of-the-art approaches, including iOri-Euk, Stack-ORI, and ORI-Deep, within specific cell types and across different cell types. Furthermore, by incorporating an interpretable analysis mechanism, we provide insights into the learned patterns, facilitating the mapping from discovering important sequential determinants to comprehensively analysing their biological functions. To facilitate the widespread utilisation of PLANNER, we developed an online webserver and local stand-alone software, available at http://planner.unimelb-biotools.cloud.edu.au/ and https://github.com/CongWang3/PLANNER, respectively.

9.
IEEE Trans Cybern ; PP2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771679

RESUMEN

Temporal knowledge graphs (TKGs) are receiving increased attention due to their time-dependent properties and the evolving nature of knowledge over time. TKGs typically contain complex geometric structures, such as hierarchical, ring, and chain structures, which can often be mixed together. However, embedding TKGs into Euclidean space, as is typically done with TKG completion (TKGC) models, presents a challenge when dealing with high-dimensional nonlinear data and complex geometric structures. To address this issue, we propose a novel TKGC model called multicurvature adaptive embedding (MADE). MADE models TKGs in multicurvature spaces, including flat Euclidean space (zero curvature), hyperbolic space (negative curvature), and hyperspherical space (positive curvature), to handle multiple geometric structures. We assign different weights to different curvature spaces in a data-driven manner to strengthen the ideal curvature spaces for modeling and weaken the inappropriate ones. Additionally, we introduce the quadruplet distributor (QD) to assist the information interaction in each geometric space. Ultimately, we develop an innovative temporal regularization to enhance the smoothness of timestamp embeddings by strengthening the correlation of neighboring timestamps. Experimental results show that MADE outperforms the existing state-of-the-art TKGC models.

10.
Neural Netw ; 174: 106219, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38442489

RESUMEN

Extrapolating future events based on historical information in temporal knowledge graphs (TKGs) holds significant research value and practical applications. In this field, the methods currently utilized can be classified as either embedding-based or logical rule-based. Embedding-based methods depend on learned entity and relation embeddings for prediction, but they suffer from the lack of interpretability due to the opaque reasoning process. On the other hand, logical rule-based methods face scalability challenges as they heavily rely on predefined logical rules. To overcome these limitations, we propose a hybrid model that combines embedding-based and logical rule-based methods to capture deep causal logic. Our model, called the Inductive Reasoning Model based on Interpretable Logical Rule (ILR-IR), aims to provide interpretable insights while effectively predicting future events in TKGs. ILR-IR delves into historical information, extracting valuable insights from logical rules embedded within relations and interaction preferences between entities. By considering both logical rules and interaction preferences, ILR-IR offers a comprehensive perspective for predicting future events. In addition, we propose the incorporation of a one-class augmented matching loss during optimization, which serves to enhance performance of the model during training. We evaluate ILR-IR on multiple datasets, including ICEWS14, ICEWS0515, and ICEWS18. Experimental results demonstrate that ILR-IR outperforms state-of-the-art baselines, showcasing its superior performance in TKG extrapolation reasoning. Moreover, ILR-IR demonstrates remarkable generalization capabilities, even when applied to related datasets that share a common relation vocabulary. This suggests that our proposed model exhibits robust zero-shot reasoning abilities. For interested parties, we have made our code publicly available at https://github.com/mxadorable/ILR-IR.


Asunto(s)
Reconocimiento de Normas Patrones Automatizadas , Solución de Problemas , Aprendizaje , Generalización Psicológica , Conocimiento
11.
Neural Netw ; 172: 106151, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38301339

RESUMEN

Representation learning on temporal interaction graphs (TIG) aims to model complex networks with the dynamic evolution of interactions on a wide range of web and social graph applications. However, most existing works on TIG either (a) rely on discretely updated node embeddings merely when an interaction occurs that fail to capture the continuous evolution of embedding trajectories of nodes, or (b) overlook the rich temporal patterns hidden in the ever-changing graph data that presumably lead to sub-optimal models. In this paper, we propose a two-module framework named ConTIG, a novel representation learning method on TIG that captures the continuous dynamic evolution of node embedding trajectories. With two essential modules, our model exploits three-fold factors in dynamic networks including latest interaction, neighbor features, and inherent characteristics. In the first update module, we employ a continuous inference block to learn the nodes' state trajectories from time-adjacent interaction patterns using ordinary differential equations. In the second transform module, we introduce a self-attention mechanism to predict future node embeddings by aggregating historical temporal interaction information. Experiment results demonstrate the superiority of ConTIG on temporal link prediction, temporal node recommendation, and dynamic node classification tasks of four datasets compared with a range of state-of-the-art baselines, especially for long-interval interaction prediction.


Asunto(s)
Aprendizaje Automático
12.
Int J Hematol ; 119(2): 119-129, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38147275

RESUMEN

Adult B-cell acute lymphoblastic leukemia (B-ALL) prognosis remains unsatisfactory, and searching for new therapeutic targets is crucial for improving patient prognosis. Sperm-associated antigen 6 (SPAG6), a member of the cancer-testis antigen family, plays an important role in tumors, especially hematologic tumors; however, it is unknown whether SPAG6 plays a role in adult B-ALL. In this study, we demonstrated for the first time that SPAG6 expression was up-regulated in the bone marrow of adult B-ALL patients compared to healthy donors, and expression was significantly reduced in patients who achieved complete remission (CR) after treatment. In addition, patients with high SPAG6 expression were older (≥ 35 years; P = 0.015), had elevated white blood cell counts (WBC > 30 × 109/L; P = 0.021), and a low rate of CR (P = 0.036). We explored the SPAG6 effect on cell function by lentiviral transfection of adult B-ALL cell lines BALL-1 and NALM-6, and discovered that knocking down SPAG6 significantly inhibited cell proliferation and promoted apoptosis. We identified that SPAG6 knockdown might regulate cell proliferation and apoptosis via the transforming growth factor-ß (TGF-ß)/Smad signaling pathway.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Factor de Crecimiento Transformador beta , Masculino , Adulto , Humanos , Transducción de Señal , Apoptosis/genética , Proliferación Celular , Proteínas de Microtúbulos/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-38598381

RESUMEN

Self-supervised learning (SSL) has recently achieved impressive performance on various time series tasks. The most prominent advantage of SSL is that it reduces the dependence on labeled data. Based on the pre-training and fine-tuning strategy, even a small amount of labeled data can achieve high performance. Compared with many published self-supervised surveys on computer vision and natural language processing, a comprehensive survey for time series SSL is still missing. To fill this gap, we review current state-of-the-art SSL methods for time series data in this article. To this end, we first comprehensively review existing surveys related to SSL and time series, and then provide a new taxonomy of existing time series SSL methods by summarizing them from three perspectives: generative-based, contrastive-based, and adversarial-based. These methods are further divided into ten subcategories with detailed reviews and discussions about their key intuitions, main frameworks, advantages and disadvantages. To facilitate the experiments and validation of time series SSL methods, we also summarize datasets commonly used in time series forecasting, classification, anomaly detection, and clustering tasks. Finally, we present the future directions of SSL for time series analysis.

14.
Neural Netw ; 164: 439-454, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37182346

RESUMEN

Cross-network node classification (CNNC), which aims to classify nodes in a label-deficient target network by transferring the knowledge from a source network with abundant labels, draws increasing attention recently. To address CNNC, we propose a domain-adaptive message passing graph neural network (DM-GNN), which integrates graph neural network (GNN) with conditional adversarial domain adaptation. DM-GNN is capable of learning informative representations for node classification that are also transferrable across networks. Firstly, a GNN encoder is constructed by dual feature extractors to separate ego-embedding learning from neighbor-embedding learning so as to jointly capture commonality and discrimination between connected nodes. Secondly, a label propagation node classifier is proposed to refine each node's label prediction by combining its own prediction and its neighbors' prediction. In addition, a label-aware propagation scheme is devised for the labeled source network to promote intra-class propagation while avoiding inter-class propagation, thus yielding label-discriminative source embeddings. Thirdly, conditional adversarial domain adaptation is performed to take the neighborhood-refined class-label information into account during adversarial domain adaptation, so that the class-conditional distributions across networks can be better matched. Comparisons with eleven state-of-the-art methods demonstrate the effectiveness of the proposed DM-GNN.


Asunto(s)
Conocimiento , Redes Neurales de la Computación
15.
IEEE Trans Neural Netw Learn Syst ; 34(2): 1089-1096, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34437071

RESUMEN

Non-Euclidean property of graph structures has faced interesting challenges when deep learning methods are applied. Graph convolutional networks (GCNs) can be regarded as one of the successful approaches to classification tasks on graph data, although the structure of this approach limits its performance. In this work, a novel representation learning approach is introduced based on spectral convolutions on graph-structured data in a semisupervised learning setting. Our proposed method, COnvOlving cLiques (COOL), is constructed as a neighborhood aggregation approach for learning node representations using established GCN architectures. This approach relies on aggregating local information by finding maximal cliques. Unlike the existing graph neural networks which follow a traditional neighborhood averaging scheme, COOL allows for aggregation of densely connected neighboring nodes of potentially differing locality. This leads to substantial improvements on multiple transductive node classification tasks.

16.
IEEE Trans Neural Netw Learn Syst ; 34(11): 9102-9115, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35320107

RESUMEN

Many e-commerce platforms, such as AliExpress, run major promotion campaigns regularly. Before such a promotion, it is important to predict potential best sellers and their respective sales volumes so that the platform can arrange their supply chains and logistics accordingly. For items with a sufficiently long sales history, accurate sales forecast can be achieved through the traditional statistical forecasting techniques. Accurately predicting the sales volume of a new item, however, is rather challenging with existing methods; time series models tend to overfit due to the very limited historical sales records of the new item, whereas models that do not utilize historical information often fail to make accurate predictions, due to the lack of strong indicators of sales volume among the item's basic attributes. This article presents the solution deployed at Alibaba in 2019, which had been used in production to prepare for its annual "Double 11" promotion event whose total sales amount exceeded U.S. $ 38 billion in a single day. The main idea of the proposed solution is to predict the sales volume of each new item through its connections with older products with sufficiently long sales history. In other words, our solution considers the cross-selling effects between different products, which has been largely neglected in previous methods. Specifically, the proposed solution first constructs an item graph, in which each new item is connected to relevant older items. Then, a novel multitask graph convolutional neural network (GCN) is trained by a multiobjective optimization-based gradient surgery technique to predict the expected sales volumes of new items. The designs of both the item graph and the GCN exploit the fact that we only need to perform accurate sales forecasts for potential best-selling items in a major promotion, which helps reduce computational overhead. Extensive experiments on both proprietary AliExpress data and a public dataset demonstrate that the proposed solution achieves consistent performance gains compared to existing methods for sales forecast.

17.
Neural Netw ; 166: 105-126, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37487409

RESUMEN

In recent years, neural systems have demonstrated highly effective learning ability and superior perception intelligence. However, they have been found to lack effective reasoning and cognitive ability. On the other hand, symbolic systems exhibit exceptional cognitive intelligence but suffer from poor learning capabilities when compared to neural systems. Recognizing the advantages and disadvantages of both methodologies, an ideal solution emerges: combining neural systems and symbolic systems to create neural-symbolic learning systems that possess powerful perception and cognition. The purpose of this paper is to survey the advancements in neural-symbolic learning systems from four distinct perspectives: challenges, methods, applications, and future directions. By doing so, this research aims to propel this emerging field forward, offering researchers a comprehensive and holistic overview. This overview will not only highlight the current state-of-the-art but also identify promising avenues for future research.


Asunto(s)
Aprendizaje , Redes Neurales de la Computación , Inteligencia Artificial , Cognición , Solución de Problemas
18.
Artículo en Inglés | MEDLINE | ID: mdl-37695949

RESUMEN

Graph neural networks (GNNs) have shown great ability in modeling graphs; however, their performance would significantly degrade when there are noisy edges connecting nodes from different classes. To alleviate negative effect of noisy edges on neighborhood aggregation, some recent GNNs propose to predict the label agreement between node pairs within a single network. However, predicting the label agreement of edges across different networks has not been investigated yet. Our work makes the pioneering attempt to study a novel problem of cross-network homophilous and heterophilous edge classification (CNHHEC) and proposes a novel domain-adaptive graph attention-supervised network (DGASN) to effectively tackle the CNHHEC problem. First, DGASN adopts multihead graph attention network (GAT) as the GNN encoder, which jointly trains node embeddings and edge embeddings via the node classification and edge classification losses. As a result, label-discriminative embeddings can be obtained to distinguish homophilous edges from heterophilous edges. In addition, DGASN applies direct supervision on graph attention learning based on the observed edge labels from the source network, thus lowering the negative effects of heterophilous edges while enlarging the positive effects of homophilous edges during neighborhood aggregation. To facilitate knowledge transfer across networks, DGASN employs adversarial domain adaptation to mitigate domain divergence. Extensive experiments on real-world benchmark datasets demonstrate that the proposed DGASN achieves the state-of-the-art performance in CNHHEC.

19.
IEEE Trans Pattern Anal Mach Intell ; 45(1): 980-998, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35077355

RESUMEN

Detecting hot social events (e.g., political scandal, momentous meetings, natural hazards, etc.) from social messages is crucial as it highlights significant happenings to help people understand the real world. On account of the streaming nature of social messages, incremental social event detection models in acquiring, preserving, and updating messages over time have attracted great attention. However, the challenge is that the existing event detection methods towards streaming social messages are generally confronted with ambiguous events features, dispersive text contents, and multiple languages, and hence result in low accuracy and generalization ability. In this paper, we present a novel reinForced, incremental and cross-lingual social Event detection architecture, namely FinEvent, from streaming social messages. Concretely, we first model social messages into heterogeneous graphs integrating both rich meta-semantics and diverse meta-relations, and convert them to weighted multi-relational message graphs. Second, we propose a new reinforced weighted multi-relational graph neural network framework by using a Multi-agent Reinforcement Learning algorithm to select optimal aggregation thresholds across different relations/edges to learn social message embeddings. To solve the long-tail problem in social event detection, a balanced sampling strategy guided Contrastive Learning mechanism is designed for incremental social message representation learning. Third, a new Deep Reinforcement Learning guided density-based spatial clustering model is designed to select the optimal minimum number of samples required to form a cluster and optimal minimum distance between two clusters in social event detection tasks. Finally, we implement incremental social message representation learning based on knowledge preservation on the graph neural network and achieve the transferring cross-lingual social event detection. We conduct extensive experiments to evaluate the FinEvent on Twitter streams, demonstrating a significant and consistent improvement in model quality with 14%-118%, 8%-170%, and 2%-21% increases in performance on offline, online, and cross-lingual social event detection tasks.

20.
Artículo en Inglés | MEDLINE | ID: mdl-37440376

RESUMEN

Contrastive learning (CL) is a prominent technique for self-supervised representation learning, which aims to contrast semantically similar (i.e., positive) and dissimilar (i.e., negative) pairs of examples under different augmented views. Recently, CL has provided unprecedented potential for learning expressive graph representations without external supervision. In graph CL, the negative nodes are typically uniformly sampled from augmented views to formulate the contrastive objective. However, this uniform negative sampling strategy limits the expressive power of contrastive models. To be specific, not all the negative nodes can provide sufficiently meaningful knowledge for effective contrastive representation learning. In addition, the negative nodes that are semantically similar to the anchor are undesirably repelled from it, leading to degraded model performance. To address these limitations, in this article, we devise an adaptive sampling strategy termed "AdaS." The proposed AdaS framework can be trained to adaptively encode the importance of different negative nodes, so as to encourage learning from the most informative graph nodes. Meanwhile, an auxiliary polarization regularizer is proposed to suppress the adverse impacts of the false negatives and enhance the discrimination ability of AdaS. The experimental results on a variety of real-world datasets firmly verify the effectiveness of our AdaS in improving the performance of graph CL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA