Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Planta Med ; 83(1-02): 23-29, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27286338

RESUMEN

Curzerene is a sesquiterpene and component used in oriental medicine. It was originally isolated from the traditional Chinese herbal medicine Curcuma rhizomes. In this study, anticancer activity of curzerene was examined in both in vitro and in vivo models. The result of the MTT assay showed that curzerene exhibited antiproliferative effects in SPC-A1 human lung adenocarcinoma cells in a time-dependent and dose-dependent manner. The anticancer IC50s were 403.8, 154.8, and 47.0 µM for 24, 48, and 72 hours, respectively. The flow cytometry analysis indicated curzerene arrested the cells in the G2/M cell cycle and promoted or induced apoptosis of SPC-A1 cells. The percentage of cells arrested in the G2/M phase increased from 9.26 % in the control group cells to 17.57 % in the cells treated with the highest dose (100 µM) of curzerene. Western blot and RT-PCR analysis demonstrated that curzerene induced the downregulation of GSTA1 protein and mRNA expressions in SPC-A1 cells. Tumor growth was significantly inhibited in SPC-A1 cell-bearing nude mice by using curzerene (135 mg/kg daily), meanwhile, curzerene did not significantly affect body mass and the organs of the mice, which may indicate that curzerene has limited toxicity and side effects in vivo. In conclusion, curzerene could inhibit the proliferation of SPC-A1 human lung adenocarcinoma cells line in both in vitro and in vivo models. Focusing on its relationship with GSTA1, curzerene could induce the downregulation of GSTA1 protein and mRNA expressions in SPC-A1 cells. Curzerene might be used as an anti-lung adenocarcinoma drug candidate compound for further development.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Curcuma/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Extractos Vegetales/química , Sesquiterpenos/farmacología , Adenocarcinoma del Pulmón , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Femenino , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Sesquiterpenos/química , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Cell Mol Med ; 20(7): 1381-91, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26989860

RESUMEN

Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme of fatty acid ß-oxidation, plays an important role in cardiac hypertrophy. However, its effect on the cardiomyocyte apoptosis remains unknown. We aimed to determine the role of SCAD in tert-butyl hydroperoxide (tBHP)-induced cardiomyocyte apoptosis. The mRNA and protein expression of SCAD were significantly down-regulated in the cardiomyocyte apoptosis model. Inhibition of SCAD with siRNA-1186 significantly decreased SCAD expression, enzyme activity and ATP content, but obviously increased the content of free fatty acids. Meanwhile, SCAD siRNA treatment triggered the same apoptosis as cardiomyocytes treated with tBHP, such as the increase in cell apoptotic rate, the activation of caspase3 and the decrease in the Bcl-2/Bax ratio, which showed that SCAD may play an important role in primary cardiomyocyte apoptosis. The changes of phosphonate AMP-activated protein kinase α (p-AMPKα) and Peroxisome proliferator-activated receptor α (PPARα) in cardiomyocyte apoptosis were consistent with that of SCAD. Furthermore, PPARα activator fenofibrate and AMPKα activator AICAR treatment significantly increased the expression of SCAD and inhibited cardiomyocyte apoptosis. In conclusion, for the first time our findings directly demonstrated that SCAD may be as a new target to prevent cardiomyocyte apoptosis through the AMPK/PPARα/SCAD signal pathways.


Asunto(s)
Apoptosis , Butiril-CoA Deshidrogenasa/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/enzimología , Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Cardiotónicos/farmacología , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fenofibrato/farmacología , Miocitos Cardíacos/efectos de los fármacos , PPAR alfa/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Ribonucleótidos/farmacología , terc-Butilhidroperóxido/farmacología
3.
J Hypertens ; 41(5): 775-793, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36883465

RESUMEN

OBJECTIVES: Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme in the fatty acid oxidation process, is not only involved in ATP synthesis but also regulates the production of mitochondrial reactive oxygen species (ROS) and nitric oxide synthesis. The purpose of this study was to investigate the possible role of SCAD in hypertension-associated vascular remodelling. METHODS: In-vivo experiments were performed on spontaneously hypertensive rats (SHRs, ages of 4 weeks to 20 months) and SCAD knockout mice. The aorta sections of hypertensive patients were used for measurement of SCAD expression. In-vitro experiments with t-butylhydroperoxide (tBHP), SCAD siRNA, adenovirus-SCAD (MOI 90) or shear stress (4, 15 dynes/cm 2 ) were performed using human umbilical vein endothelial cells (HUVECs). RESULTS: Compared with age-matched Wistar rats, aortic SCAD expression decreased gradually in SHRs with age. In addition, aerobic exercise training for 8 weeks could significantly increase SCAD expression and enzyme activity in the aortas of SHRs while decreasing vascular remodelling in SHRs. SCAD knockout mice also exhibited aggravated vascular remodelling and cardiovascular dysfunction. Likewise, SCAD expression was also decreased in tBHP-induced endothelial cell apoptosis models and the aortas of hypertensive patients. SCAD siRNA caused HUVEC apoptosis in vitro , whereas adenovirus-mediated SCAD overexpression (Ad-SCAD) protected against HUVEC apoptosis. Furthermore, SCAD expression was decreased in HUVECs exposed to low shear stress (4 dynes/cm 2 ) and increased in HUVECs exposed to 15 dynes/cm 2 compared with those under static conditions. CONCLUSION: SCAD is a negative regulator of vascular remodelling and may represent a novel therapeutic target for vascular remodelling.


Asunto(s)
Butiril-CoA Deshidrogenasa , Hipertensión , Ratas , Animales , Ratones , Humanos , Recién Nacido , Butiril-CoA Deshidrogenasa/genética , Butiril-CoA Deshidrogenasa/metabolismo , Remodelación Vascular , Ratas Endogámicas SHR , Ratas Wistar , Células Endoteliales de la Vena Umbilical Humana/metabolismo , ARN Interferente Pequeño/metabolismo , Ratones Noqueados
4.
Front Oncol ; 12: 961257, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912204

RESUMEN

Colorectal cancer (CRC) is the second most lethal cancer and the third most common cancer in the world, and its prognosis is severely affected by high intestinal mucosal permeability and increasing tumor burden. Studies have shown that the expression of hypoxia induce factor 1α (HIF1α) is up-regulated in a variety of tumor tissues, which is related to multiple metabolic reprogramming of tumor cells. However, the role of HIF1α in CRC tumor growth, tumor polyamine metabolism and intestinal mucosal barrier damage has not been studied. Here, we constructed different types of CRC tumor-bearing mice models by inoculating HCT116 cells with different levels of HIF1α expression (knockdown, wild type, overexpression) in the armpits of mice to explore the upstream and downstream regulators of HIF1α, the effects of HIF1α on the growth of CRC, and the CRC polyamine metabolism and its effect on the intestinal mucosal barrier. We found that with the increase of HIF1 gene expression, tumor growth was promoted and intestinal mucosal permeability was increased. The expression of glycolysis-related proteins was up-regulated, the rate-limiting enzyme ODC of polyamine synthesis was decreased, and the transfer protein of polyamine was increased. HPLC showed that the polyamine content in the tumor tissue of the overexpression group HIF1α OE was higher than that of the wild group HIF1α (+/+), and higher than that of the knockdown group HIF1α (-/-), but the content of polyamines in intestinal mucosa was the opposite. After supplementation of exogenous polyamines, the content of polyamines in intestinal mucosa and tumor tissue increased, and the damage of intestinal mucosa was alleviated. In conclusion, upon activation of the MYC/HIF1 pathway, tumor glycolysis is enhanced, tumors require more energy and endogenous polyamine synthesis is reduced. Therefore, in order to meet its growth needs, tumor will rob polyamines in the intestinal mucosa, resulting in intestinal mucosal epithelial barrier dysfunction.

5.
Cytokine ; 52(3): 210-4, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20667748

RESUMEN

To examine the roles of intracellular calcium in RANKL-induced bone marrow macrophages (BMMs) differentiation, the effects of intracellular calcium chelator BAPTA-AM on RANKL-induced BMMs differentiation, and the activation of its relating signal proteins (MAPKs, and the PI3K/Akt) were studied. BMMs were cultured with various concentrations of BAPTA-AM in the presence of M-CSF (25 ng/ml) and RANKL (25 ng/ml) for 7 days, osteoclastogenic ability, cytosolic free Ca(2+) concentration, osteoclast survival and the expression of phosphorylated ERK1/2, SAPK/JNK, Akt and p38 MAPK were measured by TRAP staining, spectrofluorometer and Western blotting. BAPTA-AM inhibited osteoclastogenesis and osteoclast survival of BMMs by RANKL induction. In osteoclasts without the pretreatment of BAPTA-AM, the increased response of [Ca(2+)](i) was observed within 15 min and the maximum was about 1.2 times that of control. This response was sustained for 30 min and returned to the control level at 1h after RANKL-inducing, and the increased response of [Ca(2+)](i) was completely abolished and sustained to at least 8h by BAPTA-AM. Although immunoblotting data revealed that RANKL could activate the phosphorylation of ERK1/2, SAPK/JNK, Akt and p38 MAPK, the expression of ERK1/2, Akt and p38 MAPK phosphorylation was inhibited by BAPTA-AM dose-dependently. These results revealed that BAPTA-AM inhibit osteoclastogenic ability of BMMs via suppressing the increase of [Ca(2+)](i) which lead to inhibit RANKL-induced the phosphorylation of ERK, Akt and p38 MAPK, but not JNK. This finding may be useful in the development of an osteoclastic inhibitor that targets intracellular signaling factors.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Calcio/química , Diferenciación Celular/efectos de los fármacos , Quelantes/farmacología , Ácido Egtácico/análogos & derivados , Macrófagos/efectos de los fármacos , Proteínas Quinasas/metabolismo , Ligando RANK/fisiología , Animales , Western Blotting , Células de la Médula Ósea/citología , Quelantes/química , Ácido Egtácico/química , Ácido Egtácico/farmacología , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos BALB C , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Fosforilación , Espectrometría de Fluorescencia
6.
Life Sci ; 258: 118156, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735886

RESUMEN

AIMS: Flavin adenine dinucleotide (FAD), participates in fatty acid ß oxidation as a cofactor, which has been confirmed to enhance SCAD activity and expression. However, the role of FAD on hypertensive vascular remodeling is unclear. In this study, we investigated the underlying mechanisms of FAD on vascular remodeling and endothelial homeostasis. MAIN METHODS: Morphological examination of vascular remodeling were analyzed with hematoxylin and eosin (HE) staining, Verhoeff's Van Gieson (EVG) staing, Dihydroethidium (DHE) staining and Sirius red staining. HUVECs apoptotic rate was detected by flow cytometry and HUVECs reactive oxygen species (ROS) was detected by DHE-probe. Enzymatic reactions were used to detect SCAD enzyme activity. The protein level was detected by Western Blots, the mRNA level was detected by quantitative real-time PCR. KEY FINDINGS: In vivo experiments, FAD significantly decreased blood pressure and ameliorated vascular remodeling by increasing SCAD expression, Nitric Oxide (NO) production and reducing ROS production. In vitro experiments, FAD protected against the tBHP induced injury in HUVEC, by increasing the activity of SCAD, increasing the elimination of free fatty acid (FFA), scavenging ROS, reducing apoptotic rate, thereby improving endothelial cell function. SIGNIFICANCE: FAD has a new possibility for preventing and treating hypertensive vascular remodeling.


Asunto(s)
Acil-CoA Deshidrogenasas/metabolismo , Activadores de Enzimas/uso terapéutico , Flavina-Adenina Dinucleótido/uso terapéutico , Hipertensión/tratamiento farmacológico , Remodelación Vascular/efectos de los fármacos , Animales , Presión Sanguínea/efectos de los fármacos , Activadores de Enzimas/farmacología , Flavina-Adenina Dinucleótido/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Ratas Endogámicas SHR , Ratas Wistar
7.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 31(2): 172-177, 2019 Feb.
Artículo en Zh | MEDLINE | ID: mdl-30827304

RESUMEN

OBJECTIVE: To Study the changes of short-chain acyl-CoA dehydrogenase (SCAD) in heart failure (HF) after myocardial infarction (MI), and the effect of aerobic exercise on SCAD. METHODS: Healthy male Sprague-Dawley (SD) rats were divided into sham operation group (Sham group), sham operation swimming group (Sham+swim group), HF model group (LAD group) and HF swimming group (LAD+swim group) by random number table method, with 9 rats in each group. The left anterior descending branch of coronary artery (LAD) was ligated to establish a rat model of HF after MI. In Sham group, only one loose knot was threaded under the left coronary artery, and the rest operations were the same as those in LAD group. Rats in Sham+swim group and LAD+swim group were given swimming test for 1 week after operation (from 15 minutes on the 1st day to 60 minutes on the 5th day). Then they were given swimming endurance training (from the 2nd week onwards, 60 minutes daily, 6 times weekly, 10 weeks in a row). Tail artery systolic pressure (SBP) was measured before swimming endurance training and every 2 weeks until the end of the 10th week. Ten weeks after swimming training, echocardiography was performed to measure cardiac output (CO), stroke volume (SV), left ventricular ejection fraction (LVEF), shortening fraction (FS), left ventricular end-systolic diameter (LVESD), left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic volume (LVESV), and left ventricular end-diastolic volume (LVEDV). Morphological changes of heart were observed by Masson staining. Apoptosis of myocardial cells was detected by transferase-mediated deoxyuridine triphosphate-biotin nick end labeling stain (TUNEL) and apoptosis index (AI) was calculated. Reverse transcription-polymerase chain reaction (RT-PCR) and Western Blot were used to detect the mRNA and protein expression of myocardial SCAD respectively. In addition, the enzyme activity of SCAD, the content of adenosine triphosphate (ATP) and free fatty acid (FFA) in serum and myocardium were detected according to the kit instruction steps. RESULTS: Compared with Sham group, Sham+swim group showed SBP did not change significantly, with obvious eccentric hypertrophy and increased myocardial contractility, and LAD group showed persistent hypotension, obvious MI, thinning of left ventricle, and decreased myocardial systolic/diastolic function. Compared with LAD group, SBP, systolic/diastolic function and MI in LAD+swim group were significantly improved [SBP (mmHg, 1 mmHg = 0.133 kPa): 119.5±4.4 vs. 113.2±4.5 at 4 weeks, 120.3±4.0 vs. 106.5±3.7 at 6 weeks, 117.4±1.3 vs. 111.0±2.3 at 8 weeks, 126.1±1.6 vs. 119.4±1.9 at 10 weeks; CO (mL/min): 59.10±6.31 vs. 33.19±4.76, SV (µL): 139.42±17.32 vs. 84.02±14.26, LVEF: 0.523±0.039 vs. 0.309±0.011, FS: (28.17±2.57)% vs. (15.93±3.64)%, LVEDD (mm): 8.80±0.19 vs. 9.35±0.30, LVESD (mm): 5.90±0.77 vs. 7.97±0.60, LVEDV (µL): 426.57±20.84 vs. 476.24±25.18, LVESV (µL): 209.50±25.18 vs. 318.60±16.10; AI: (20.4±1.4)% vs. (31.2±4.6)%; all P < 0.05]. Compared with Sham group, the mRNA and protein expression of myocardium SCAD, the activity of SCAD in Sham+swim group were significantly increased, the content of ATP was slightly increased, the content of serum FFA was significantly decreased, and the content of myocardial FFA was slightly decreased; conversely, the mRNA and protein expression of myocardium SCAD, the activity of SCAD and the content of ATP in LAD group were significantly decreased, the content of serum and myocardial FFA were significantly increased. Compared with LAD group, the mRNA and protein expression of myocardium SCAD, the content of ATP were significantly increased in LAD+swim group [SCAD mRNA (2-ΔΔCt): 0.52±0.16 vs. 0.15±0.01, SCAD/GAPDH (fold increase from Sham group): 0.94±0.08 vs. 0.60±0.11, ATP content (µmol/g): 52.8±10.1 vs. 14.7±6.1, all P < 0.05], the content of serum and myocardial FFA were significantly decreased [serum FFA (nmol/L): 0.11±0.03 vs. 0.29±0.04, myocardial FFA (nmol/g): 32.7±8.2 vs. 59.7±10.7, both P < 0.05], and the activity of SCAD was slightly increased (kU/g: 12.3±4.3 vs. 8.9±5.8, P > 0.05). CONCLUSIONS: The expression of SCAD in HF was significantly down-regulated, and the expression was significantly up-regulated after aerobic exercise intervention, indicating that swimming may improve the severity of HF by up-regulating the expression of SCAD.


Asunto(s)
Butiril-CoA Deshidrogenasa/metabolismo , Insuficiencia Cardíaca/metabolismo , Animales , Insuficiencia Cardíaca/etiología , Masculino , Infarto del Miocardio/complicaciones , Condicionamiento Físico Animal , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
8.
Oncol Lett ; 16(1): 467-474, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29928434

RESUMEN

Glutathione S-transferase A1 (GSTA1) is a phase II detoxification enzyme and serves a crucial role in anti-cancer drug resistance. In our previous study, GSTA1 was identified to be highly expressed in various subtypes of non-small-cell lung cancer cell lines compared with human embryonic lung fibroblast cell line MRC-5. The aim of the present study was to investigate the effect of GSTA1 expression on the proliferation and apoptosis of A549 cells. GSTA1 expression was knocked down or with overexpressed using lentivirus particles. Western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to assess the protein, and mRNA levels of GSTA1 in A549 cells, respectively. The effect of GSTA1 manipulation on cell proliferation and apoptosis were investigated in vitro using MTT assays, Hoechst 33258 staining and flow cytometry, and in vivo using A549 cell line xenografts in nude mice. The results of the western blot analysis and RT-qPCR revealed that stable cell models of GSTA1 knockdown, and overexpression were established. The data of the MTT assay indicated that the downregulation of GSTA1 significantly inhibited cell proliferation compared with si-control-transfected cells. These si-GSTA1 A549 cells exhibited typical morphological changes of apoptosis, including chromatin condensation and shrunken nuclei compared with the si-control counterparts. An AnnexinV-fluorescein isothiocyanate assay verified that the downregulation of GSTA1 significantly induced cell apoptosis in vitro. In addition, overexpression of GSTA1 significantly promoted tumor growth in vivo. Accordingly, downregulation of GSTA1 suppressed tumor growth. In conclusion, GSTA1 plays an important role in regulation of cell proliferation and cell apoptosis in A549 cell line.

9.
Artículo en Inglés | MEDLINE | ID: mdl-28572828

RESUMEN

Apigenin is a nonmutagenic flavonoid that has antitumor properties. Polyamines are ubiquitous cellular polycations, which play an important role in the proliferation and differentiation of cancer cells. Highly regulated pathways control the biosynthesis and degradation of polyamines. Ornithine decarboxylase (ODC) is the rate-limiting enzyme in the metabolism, and spermidine/spermine-N1-Acetyl transferase (SSAT) is the rate-limiting enzyme in the catabolism of polyamines. In the current study, the effect of increasing concentrations of apigenin on polyamine levels, ODC and SSAT protein expression, mRNA expression, cell proliferation and apoptosis, and the production of reactive oxygen species (ROS) was investigated in SW620 colon cancer cells. The results showed that apigenin significantly reduced cell proliferation, decreased the levels of spermidine and spermine, and increased previously downregulated putrescine contents. Apigenin also enhanced SSAT protein and mRNA levels and the production of reactive oxygen species in SW620 cells, though it had no significant effect on the levels of ODC protein or mRNA. Apigenin appears to decrease the proliferation rate of human SW620 cells by facilitating SSAT expression to induce polyamine catabolism and increasing ROS levels to induce cell apoptosis.

10.
Oncol Rep ; 38(6): 3583-3591, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29039582

RESUMEN

Curcumol, a polyphenol compound derived from the rhizome of Curcuma, has been established as an antitumor compound against multiple types of cancer, including gastric (GC), lung, liver and breast cancer. However, the molecular mechanisms undelying its anticancer activity in GC are still unclear. In this study, the antitumor efficacy of curcumol was ascertained in human gastric adenocarcinoma MGC-803 cells. An MTT assay was used to assess the viability of the MGC-803 cells treated by curcumol. The results of the Annexin V/propidium iodide (PI) staining followed by fluorescence activated cell sorting (FACS) analysis demonstrated that the cell cycle was arrested in the G2/M phase by curcumol. Annexin V-FITC/PI double staining followed by FACS analysis revealed that curcumol induced apoptosis of MGC-803 cells. FACS analysis after the cells were loaded with a DFCH-DA probe revealed that the level of reactive oxygen species (ROS) increased after the cells were treated with curcumol. In adittion, FACS analysis after the cells were loaded with JC-1 revealed that the level of mitochondrial membrane potential (MMP) decreased after the cells were treated with curcumol. Furthermore, the downregulation of isocitrate dehydrogenase 1 (IDH1) was observed in the MGC-803 cells after being treated with curcumol as determined by western blotting and RT-qPCR. In conclusion, we elucidated the antitumor effect of curcumol on MGC-803 cells and the involved mechanisms related to the induction of apoptosis, the increase of ROS, the decrease of MMP and the downregulation of IDH1.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Isocitrato Deshidrogenasa/genética , Sesquiterpenos/administración & dosificación , Neoplasias Gástricas/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA