Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cancer ; 21(1): 224, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536414

RESUMEN

BACKGROUND: Recent studies have identified that circular RNAs (circRNAs) have an important role in cancer via their well-recognized sponge effect on miRNAs, which regulates a large variety of cancer-related genes. However, only a few circRNAs have been well-studied in renal cell carcinoma (RCC) and their regulatory function remains largely elusive. METHODS: Bioinformatics approaches were used to characterize the differentially expressed circRNAs in our own circRNA-sequencing dataset, as well as two public circRNA microarray datasets. CircNTNG1 (hsa_circ_0002286) was identified as a potential tumor-suppressing circRNA. Transwell assay and CCK-8 assay were used to assess phenotypic changes. RNA pull-down, luciferase reporter assays and FISH experiment were used to confirm the interactions among circNTNG1, miR-19b-3p, and HOXA5 mRNA. GSEA was performed to explore the downstream pathway regulated by HOXA5. Immunoblotting, chromatin immunoprecipitation, and methylated DNA immunoprecipitation were used to study the mechanism of HOXA5. RESULTS: In all three circRNA datasets, circNTNG1, which was frequently deleted in RCC, showed significantly low expression in the tumor group. The basic properties of circNTNG1 were characterized, and phenotype studies also demonstrated the inhibitory effect of circNTNG1 on RCC cell aggressiveness. Clinically, circNTNG1 expression was associated with RCC stage and Fuhrman grade, and it also served as an independent predictive factor for both OS and RFS of RCC patients. Next, the sponge effect of circNTNG1 on miR-19b-3p and the inhibition of HOXA5 by miR-19b-3p were validated. GSEA analysis indicated that HOXA5 could inactivate the epithelial-mesenchymal transition (EMT) process, and this inactivation was mediated by HOXA5-induced SNAI2 (Slug) downregulation. Finally, it was confirmed that the Slug downregulation was caused by HOXA5, along with the DNA methyltransferase DNMT3A, binding to its promoter region and increasing the methylation level. CONCLUSIONS: Based on the experimental data, in RCC, circNTNG1/miR-19b-3p/HOXA5 axis can regulate the epigenetic silencing of Slug, thus interfering EMT and metastasis of RCC. Together, our findings provide potential biomarkers and novel therapeutic targets for future study in RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Humanos , Biomarcadores , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Neoplasias Renales/genética , MicroARNs/genética , ARN Circular/genética , Silenciador del Gen , Epigénesis Genética
2.
Pharmacol Res ; 175: 105987, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798268

RESUMEN

The most common complication during pregnancy, gestational diabetes mellitus (GDM), can cause adverse pregnancy outcomes and result in the mother and infant having a higher risk of developing type 2 diabetes after pregnancy. However, existing therapies for GDM remain scant, with the most common being lifestyle intervention and appropriate insulin treatment. MOTS-c, a mitochondrial-derived peptide, can target skeletal muscle and enhance glucose metabolism. Here, we demonstrate that MOTS-c can be an effective treatment for GDM. A GDM mouse model was established by short term high-fat diet combined with low-dose streptozotocin (STZ) treatment while MOTS-c was administrated daily during pregnancy. GDM symptoms such as blood glucose and insulin levels, glucose and insulin tolerance, as well as reproductive outcomes were investigated. MOTS-c significantly alleviated hyperglycemia, improved insulin sensitivity and glucose tolerance, and reduced birth weight and the death of offspring induced by GDM. Similar to a previous study, MOTS-c also could activate insulin sensitivity in the skeletal muscle of GDM mice and elevate glucose uptake in vitro. In addition, we found that MOTS-c protects pancreatic ß-cell from STZ-mediated injury. Taken together, our findings demonstrate that MOTS-c could be a promising strategy for the treatment of GDM.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Gestacional/sangre , Diabetes Gestacional/tratamiento farmacológico , Hiperglucemia/tratamiento farmacológico , Proteínas Mitocondriales/uso terapéutico , Adiponectina/sangre , Animales , Peso al Nacer/efectos de los fármacos , Glucemia/efectos de los fármacos , Línea Celular , Diabetes Mellitus Experimental/sangre , Femenino , Hiperglucemia/sangre , Insulina/sangre , Resistencia a la Insulina , Células Secretoras de Insulina/efectos de los fármacos , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Embarazo
3.
Genomics ; 113(2): 740-754, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33516849

RESUMEN

Clear-cell renal cell carcinoma (ccRCC) carries a variable prognosis. Prognostic biomarkers can stratify patients according to risk, and can provide crucial information for clinical decision-making. We screened for an autophagy-related long non-coding lncRNA (lncRNA) signature to improve postoperative risk stratification in The Cancer Genome Atlas (TCGA) database. We confirmed this model in ICGC and SYSU cohorts as a significant and independent prognostic signature. Western blotting, autophagic-flux assay and transmission electron microscopy were used to verify that regulation of expression of 8 lncRNAs related to autophagy affected changes in autophagic flow in vitro. Our data suggest that 8-lncRNA signature related to autophagy is a promising prognostic tool in predicting the survival of patients with ccRCC. Combination of this signature with clinical and pathologic parameters could aid accurate risk assessment to guide clinical management, and this 8-lncRNAs signature related to autophagy may serve as a therapeutic target.


Asunto(s)
Autofagia/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , ARN Largo no Codificante/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , ARN Largo no Codificante/metabolismo
4.
Mol Cancer ; 20(1): 19, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33468140

RESUMEN

BACKGROUND: There is increasing evidence that circular RNAs (circRNAs) have significant regulatory roles in cancer development and progression; however, the expression patterns and biological functions of circRNAs in renal cell carcinoma (RCC) remain largely elusive. METHOD: Bioinformatics methods were applied to screen for circRNAs differentially expressed in RCC. Analysis of online circRNAs microarray datasets and our own patient cohort indicated that circSDHC (hsa_circ_0015004) had a potential oncogenic role in RCC. Subsequently, circSDHC expression was measured in RCC tissues and cell lines by qPCR assay, and the prognostic value of circSDHC evaluated. Further, a series of functional in vitro and in vivo experiments were conducted to assess the effects of circSDHC on RCC proliferation and metastasis. RNA pull-down assay, luciferase reporter and fluorescent in situ hybridization assays were used to confirm the interactions between circSDHC, miR-127-3p and its target genes. RESULTS: Clinically, high circSDHC expression was correlated with advanced TNM stage and poor survival in patients with RCC. Further, circSDHC promoted tumor cell proliferation and invasion, both in vivo and in vitro. Analysis of the mechanism underlying the effects of circSDHC in RCC demonstrated that it binds competitively to miR-127-3p and prevents its suppression of a downstream gene, CDKN3, and the E2F1 pathway, thereby leading to RCC malignant progression. Furthermore, knockdown of circSDHC caused decreased CDKN3 expression and E2F1 pathway inhibition, which could be rescued by treatment with an miR-127-3p inhibitor. CONCLUSION: Our data indicates, for the first time, an essential role for the circSDHC/miR-127-3p/CDKN3/E2F1 axis in RCC progression. Thus, circSDHC has potential to be a new therapeutic target in patients with RCC.


Asunto(s)
Carcinoma de Células Renales/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Factor de Transcripción E2F1/metabolismo , Neoplasias Renales/genética , MicroARNs/metabolismo , ARN Circular/metabolismo , Transducción de Señal , Animales , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular/genética , Progresión de la Enfermedad , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/patología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Análisis Multivariante , Invasividad Neoplásica , Metástasis de la Neoplasia , Modelos de Riesgos Proporcionales , ARN Circular/genética
5.
BMC Urol ; 20(1): 100, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32677927

RESUMEN

BACKGROUND: To investigate the value of using contrast-enhanced transrectal ultrasound (CETRUS) to reduce unnecessary collection of biopsies during prostate cancer diagnosis and its utility in predicting biochemical recurrence in patients with localized prostate cancer. METHODS: This was a prospective study of suspected prostate cancer patients who were evaluated with CETRUS followed by a prostate biopsy. Prostate blood flow via CETRUS was graded using a 5-point scale. The relationship between CETRUS score and biopsy outcome was then analyzed for all patients; univariate and multi-variate analyses were used to determine the probable prognostic factors for biochemical recurrence in patients with localized prostate cancer that underwent a radical prostatectomy. RESULTS: A total of 347 patients were enrolled in the study. Prostate cancer was found in 164 patients. A significant positive correlation (r = 0.69, p < 0.001) was found between CETRUS scores and prostate cancer incidence. Using CETRUS scores ≥2 as the threshold for when to biopsy could have safely reduced the number of biopsies taken overall by 12.1% (42/347) and spared 23.0% (42/183) of patients from undergoing an unnecessary biopsy. 77 patients with localized prostate cancer underwent a radical prostatectomy. The median follow-up time was 30 months (range: 8-56 months) and 17 of these 77 patients exhibited biochemical recurrence during the follow-up period. 3-year biochemical recurrence-free survival rates were 86% for patients with low CETRUS scores (≤ 3) and 59% for patients with high scores (> 3; p = 0.015). Multivariate Cox regression analysis indicated that CETRUS score was an independent predictor of biochemical recurrence (HR: 7.02; 95% CI: 2.00-24.69; p = 0.002). CONCLUSIONS: CETRUS scores may be a useful tool for reducing the collection unnecessary biopsy samples during prostate cancer diagnosis and are predictive of biochemical recurrence in patients with localized prostate cancer following a radical prostatectomy.


Asunto(s)
Neoplasias de la Próstata/diagnóstico por imagen , Procedimientos Innecesarios/estadística & datos numéricos , Anciano , Biopsia/estadística & datos numéricos , Medios de Contraste , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/sangre , Valor Predictivo de las Pruebas , Estudios Prospectivos , Antígeno Prostático Específico/sangre , Prostatectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Recto , Ultrasonografía/métodos
6.
Lancet Oncol ; 20(4): 591-600, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30880070

RESUMEN

BACKGROUND: Identification of high-risk localised renal cell carcinoma is key for the selection of patients for adjuvant treatment who are at truly higher risk of reccurrence. We developed a classifier based on single-nucleotide polymorphisms (SNPs) to improve the predictive accuracy for renal cell carcinoma recurrence and investigated whether intratumour heterogeneity affected the precision of the classifier. METHODS: In this retrospective analysis and multicentre validation study, we used paraffin-embedded specimens from the training set of 227 patients from Sun Yat-sen University (Guangzhou, Guangdong, China) with localised clear cell renal cell carcinoma to examine 44 potential recurrence-associated SNPs, which were identified by exploratory bioinformatics analyses of a genome-wide association study from The Cancer Genome Atlas (TCGA) Kidney Renal Clear Cell Carcinoma (KIRC) dataset (n=114, 906 600 SNPs). We developed a six-SNP-based classifier by use of LASSO Cox regression, based on the association between SNP status and patients' recurrence-free survival. Intratumour heterogeneity was investigated from two other regions within the same tumours in the training set. The six-SNP-based classifier was validated in the internal testing set (n=226), the independent validation set (Chinese multicentre study; 428 patients treated between Jan 1, 2004 and Dec 31, 2012, at three hospitals in China), and TCGA set (441 retrospectively identified patients who underwent resection between 1998 and 2010 for localised clear cell renal cell carcinoma in the USA). The main outcome was recurrence-free survival; the secondary outcome was overall survival. FINDINGS: Although intratumour heterogeneity was found in 48 (23%) of 206 cases in the internal testing set with complete SNP information, the predictive accuracy of the six-SNP-based classifier was similar in the three different regions of the training set (areas under the curve [AUC] at 5 years: 0·749 [95% CI 0·660-0·826] in region 1, 0·734 [0·651-0·814] in region 2, and 0·736 [0·649-0·824] in region 3). The six-SNP-based classifier precisely predicted recurrence-free survival of patients in three validation sets (hazard ratio [HR] 5·32 [95% CI 2·81-10·07] in the internal testing set, 5·39 [3·38-8·59] in the independent validation set, and 4·62 [2·48-8·61] in the TCGA set; all p<0·0001), independently of patient age or sex and tumour stage, grade, or necrosis. The classifier and the clinicopathological risk factors (tumour stage, grade, and necrosis) were combined to construct a nomogram, which had a predictive accuracy significantly higher than that of each variable alone (AUC at 5 years 0·811 [95% CI 0·756-0·861]). INTERPRETATION: Our six-SNP-based classifier could be a practical and reliable predictor that can complement the existing staging system for prediction of localised renal cell carcinoma recurrence after surgery, which might enable physicians to make more informed treatment decisions about adjuvant therapy. Intratumour heterogeneity does not seem to hamper the accuracy of the six-SNP-based classifier as a reliable predictor of recurrence. The classifier has the potential to guide treatment decisions for patients at differing risks of recurrence. FUNDING: National Key Research and Development Program of China, National Natural Science Foundation of China, Guangdong Provincial Science and Technology Foundation of China, and Guangzhou Science and Technology Foundation of China.


Asunto(s)
Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Recurrencia Local de Neoplasia/genética , Polimorfismo de Nucleótido Simple/genética , Área Bajo la Curva , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/mortalidad , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/cirugía , Femenino , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias Renales/mortalidad , Neoplasias Renales/patología , Neoplasias Renales/cirugía , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Nomogramas , Supervivencia sin Progresión , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Factores de Riesgo
7.
Biometals ; 32(5): 785-794, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31552528

RESUMEN

This study was conducted to investigate the damage caused by vanadium compounds and to explore the protective effects of berberine (BBR) in human umbilical vein endothelial cells (HUVECs). BBR is a biologically active small molecule found in Coptis rhizome, a remedy used in traditional Chinese medicine to treat diabetes. BBR has also been shown to lower blood glucose in diabetic patients. MTT assay was performed to observe the influence of bis(acetylacetonato)-oxidovanadium [VO(acac)2] or sodium metavanadate (NaVO3) and BBR on viability of HUVECs. The monolayer permeability of the HUVECs was assessed by measuring the transendothelial electrical resistance (TER). The endothelial nitric oxide synthase (eNOS) activity was detected by ELISA. Flow cytometry was performed to detect the generation of reactive oxygen species (ROS). The results showed that the viability of HUVECs was decreased by treatment with vanadium compounds 50-400 µM in a concentration-dependent manner, while 0.01-1 µM BBR effectively protected HUVECs from the inhibitory effects of vanadium compounds on cell viability. Also 100 and 200 µM VO(acac)2 induced high permeability and decreased eNOS activity in HUVECs. While 0.01-1 µM BBR showed no improvement in the permeability, and failed to reverse the VO(acac)2-induced changes of eNOS activity, but BBR treatment increased the eNOS activity in control cells. The addition of 200 µM VO(acac)2 significantly induced ROS generation in HUVECs, while 0.01 or 0.1 µM BBR reversed the change of ROS. In summary, BBR has protective effects in HUVECs damage induced by vanadium compounds, which is not mediated by eNOS, but related to reduced intracellular ROS.


Asunto(s)
Berberina/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Compuestos de Vanadio/farmacología , Supervivencia Celular/efectos de los fármacos , Humanos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Especies Reactivas de Oxígeno/metabolismo
9.
Cancer Sci ; 108(8): 1620-1627, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28612496

RESUMEN

We previously identified the important role of RIN1 expression in the prognosis of clear cell renal cell carcinoma (ccRCC). The role of RIN1 in ccRCC malignancy and underlying molecular mechanisms remain unclear. Here we report that ccRCC cells and tissues expressed more RIN1 than normal controls. Gain-of-function and loss-of-function studies demonstrated that RIN1 enhanced ccRCC cell growth, migration and invasion abilities in vitro and promoted tumor growth and metastasis in vivo. Mechanistic studies revealed that RIN1 has an activating effect on EGFR signaling in ccRCC. In addition, we unveil Rab25, a critical GTPase in ccRCC malignancy, as a functional RIN1 interacting partner. Knockdown of Rab25 eliminated the augmentation of carcinoma cell proliferation, migration and invasion by ectopic RIN1. We also confirmed that RIN1 and Rab25 expression correlates with the overall-survival of ccRCC patients from TCGA. These findings suggest that RIN1 plays an important oncogenic role in ccRCC malignancy by activation of EGFR signaling through interacting with Rab25, and RIN1 could be employed as an effective therapeutic target for ccRCC.


Asunto(s)
Carcinoma de Células Renales/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Renales/patología , Regulación hacia Arriba , Proteínas de Unión al GTP rab/metabolismo , Animales , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/metabolismo , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Transducción de Señal , Análisis de Supervivencia
11.
Cancer Res ; 84(10): 1659-1679, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382068

RESUMEN

The tumor microenvironment (TME) in renal cell carcinomas (RCC) is marked by substantial immunosuppression and immune resistance despite having extensive T-cell infiltration. Elucidation of the mechanisms underlying immune evasion could help identify therapeutic strategies to boost the efficacy of immune checkpoint blockade (ICB) in RCC. This study uncovered a mechanism wherein the polyadenylate-binding protein PABPC1L modulates indoleamine 2,3-dioxygenase 1 (IDO1), a prospective target for immunotherapy. PABPC1L was markedly upregulated in RCC, and high PABPC1L expression correlated with unfavorable prognosis and resistance to ICB. PABPC1L bolstered tryptophan metabolism by upregulating IDO1, inducing T-cell dysfunction and Treg infiltration. PABPC1L enhanced the stability of JAK2 mRNA, leading to increased JAK2-STAT1 signaling that induced IDO1 expression. Additionally, PABPC1L-induced activation of the JAK2-STAT1 axis created a positive feedback loop to promote PABPC1L transcription. Conversely, loss of PABPC1L diminished IDO1 expression, mitigated cytotoxic T-cell suppression, and enhanced responsiveness to anti-PD-1 therapy in patient-derived xenograft models. These findings reveal the crucial role of PABPC1L in facilitating immune evasion in RCC and indicate that inhibiting PABPC1L could be a potential immunotherapeutic approach in combination with ICB to improve patient outcomes. SIGNIFICANCE: PABPC1L functions as a key factor in renal cell carcinoma immune evasion, enhancing IDO1 and impeding T-cell function, and represents a potential target to enhance the efficacy of immune checkpoint blockade therapy.


Asunto(s)
Carcinoma de Células Renales , Indolamina-Pirrol 2,3,-Dioxigenasa , Neoplasias Renales , Triptófano , Animales , Humanos , Ratones , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/tratamiento farmacológico , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Janus Quinasa 2/metabolismo , Neoplasias Renales/inmunología , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/tratamiento farmacológico , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Triptófano/metabolismo , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Nat Commun ; 15(1): 6215, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043664

RESUMEN

Integrating genomics and histology for cancer prognosis demonstrates promise. Here, we develop a multi-classifier system integrating a lncRNA-based classifier, a deep learning whole-slide-image-based classifier, and a clinicopathological classifier to accurately predict post-surgery localized (stage I-III) papillary renal cell carcinoma (pRCC) recurrence. The multi-classifier system demonstrates significantly higher predictive accuracy for recurrence-free survival (RFS) compared to the three single classifiers alone in the training set and in both validation sets (C-index 0.831-0.858 vs. 0.642-0.777, p < 0.05). The RFS in our multi-classifier-defined high-risk stage I/II and grade 1/2 groups is significantly worse than in the low-risk stage III and grade 3/4 groups (p < 0.05). Our multi-classifier system is a practical and reliable predictor for recurrence of localized pRCC after surgery that can be used with the current staging system to more accurately predict disease course and inform strategies for individualized adjuvant therapy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Recurrencia Local de Neoplasia , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/cirugía , Masculino , Femenino , Recurrencia Local de Neoplasia/genética , Persona de Mediana Edad , Anciano , Pronóstico , Genómica/métodos , Adulto , Estadificación de Neoplasias , Aprendizaje Profundo , Supervivencia sin Enfermedad
13.
BMC Public Health ; 13: 599, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23786855

RESUMEN

BACKGROUND: Metabolic risk factors and abnormalities such as obesity and hypertension are rapidly rising among the Chinese population following China's tremendous economic growth and widespread westernization of lifestyle in recent decades. Limited information is available about the current burden of metabolic syndrome (MetS) in China. METHODS: We analyzed data on metabolic risk factors among 22,457 adults aged ≥ 32 years participating in the "Zhabei Health 2020" survey (2009-2010), a cross-sectional study of a representative sample of community residents in Zhabei District. We defined MetS using Chinese-specific cut-off points for central obesity according to consensus criteria recently endorsed by several international and national organizations in defining MetS in different populations worldwide. We used a multiple logistic regression model to assess the associations of potential risk factors with MetS. RESULTS: The unadjusted prevalence of the MetS was 35.1% for men and 32.5% for women according to the consensus criteria for Chinese. The prevalence increased progressively from 12.1% among participants aged 32-45 years to 45.4% among those aged ≥ 75 years. Age, smoking, family history of diabetes, and education are significantly associated with risk of MetS. CONCLUSIONS: The MetS is highly prevalent and has reached epidemic proportion in Chinese urban adult community residents.


Asunto(s)
Síndrome Metabólico/epidemiología , Población Urbana/estadística & datos numéricos , Adulto , Factores de Edad , Anciano , China/epidemiología , Estudios Transversales , Diabetes Mellitus/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Modelos Logísticos , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/genética , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/epidemiología , Prevalencia , Factores de Riesgo , Factores Sexuales , Fumar/epidemiología , Clase Social
14.
Cancer Commun (Lond) ; 43(7): 808-833, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37378422

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most lethal renal cancer. An overwhelming increase of patients experience tumor progression and unfavorable prognosis. However, the molecular events underlying ccRCC tumorigenesis and metastasis remain unclear. Therefore, uncovering the underlying mechanisms will pave the way for developing novel therapeutic targets for ccRCC. In this study, we sought to investigate the role of mitofusin-2 (MFN2) in supressing ccRCC tumorigenesis and metastasis. METHODS: The expression pattern and clinical significance of MFN2 in ccRCC were analyzed by using the Cancer Genome Atlas datasets and samples from our independent ccRCC cohort. Both in vitro and in vivo experiments, including cell proliferation, xenograft mouse models and transgenic mouse model, were used to determine the role of MFN2 in regulating the malignant behaviors of ccRCC. RNA-sequencing, mass spectrum analysis, co-immunoprecipitation, bio-layer interferometry and immunofluorescence were employed to elucidate the molecular mechanisms for the tumor-supressing role of MFN2. RESULTS: we reported a tumor-suppressing pathway in ccRCC, characterized by mitochondria-dependent inactivation of epidermal growth factor receptor (EGFR) signaling. This process was mediated by the outer mitochondrial membrane (OMM) protein MFN2. MFN2 was down-regulated in ccRCC and associated with favorable prognosis of ccRCC patients. in vivo and in vitro assays demonstrated that MFN2 inhibited ccRCC tumor growth and metastasis by suppressing the EGFR signaling pathway. In a kidney-specific knockout mouse model, loss of MFN2 led to EGFR pathway activation and malignant lesions in kidney. Mechanistically, MFN2 preferably binded small GTPase Rab21 in its GTP-loading form, which was colocalized with endocytosed EGFR in ccRCC cells. Through this EGFR-Rab21-MFN2 interaction, endocytosed EGFR was docked to mitochondria and subsequently dephosphorylated by the OMM-residing tyrosine-protein phosphatase receptor type J (PTPRJ). CONCLUSIONS: Our findings uncover an important non-canonical mitochondria-dependent pathway regulating EGFR signaling by the Rab21-MFN2-PTPRJ axis, which contributes to the development of novel therapeutic strategies for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Humanos , Ratones , Carcinogénesis , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Receptores ErbB/genética , GTP Fosfohidrolasas/genética , Neoplasias Renales/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética
15.
Eur J Med Chem ; 258: 115577, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37352796

RESUMEN

Human caseinolytic protease P (ClpP) is required for the regulatory hydrolysis of mitochondrial proteins. Allosteric ClpP agonists dysfunctionally activate mitochondrial ClpP in antileukemic therapies. We previously developed ZG111, a potent ClpP agonist derived from ICG-001, inhibits the proliferation of pancreatic ductal adenocarcinoma cell lines in vitro and in vivo by degrading respiratory chain complex proteins. Herein, we studied the structure-activity relationships of ICG-001 analogs as antileukemia agents. Compound ZG36 exhibited improved stabilization effects on the thermal stability of ClpP in acute myeloid leukemia (AML) cell lines compared with the stabilization effects of ZG111, indicating a direct binding between ZG36 and ClpP. Indeed, the resolved ZG36/ClpP structural complex reveals the mode of action of ZG36 during ClpP binding. Compound ZG36 nonselectively degrades respiratory chain complexes and decreases the mitochondrial DNA, eventually leading to the collapse of mitochondrial function and leukemic cell death. Finally, ZG36 treatment inhibited 3-D cell growth in vitro and suppressed the tumorigenesis of AML cells in xenografted mice models. Collectively, we developed a new class of human ClpP agonists that can be used as potential antileukemic therapies.


Asunto(s)
Leucemia Mieloide Aguda , Mitocondrias , Animales , Humanos , Ratones , Línea Celular , Endopeptidasa Clp/química , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mitocondrias/metabolismo , Relación Estructura-Actividad
16.
Eur J Med Chem ; 258: 115595, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37385078

RESUMEN

Glioblastoma (GBM) is an aggressive brain tumor with extremely limited clinical treatment options. Because of the blood-brain barrier (BBB), it is difficult for anti-GBM drug candidates to enter the brain to exert their therapeutic effects. The spirocyclic skeleton structure exhibits good lipophilicity and permeability, enabling small-molecule compounds to cross the BBB. Herein, we designed and synthesized novel 3-oxetanone-derived spirocyclic compounds containing a spiro[3.4]octane ring and determined their structure-activity relationship for antiproliferation in GBM cells. Among these, the chalcone-spirocycle hybrid 10m/ZS44 exhibited high antiproliferative activity in U251 cells and permeability in vitro. Furthermore, 10m/ZS44 activated the SIRT1/p53-mediated apoptosis pathway to inhibit proliferation in U251 cells, whereas it minimally impaired other cell-death pathways, such as pyroptosis or necroptosis. In a mouse xenograft model, 10m/ZS44 exhibited a substantial inhibitory effect on GBM tumor growth without showing obvious toxicity. Overall, 10m/ZS44 represents a promising spirocyclic compound for the treatment of GBM.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Línea Celular Tumoral , Glioblastoma/patología , Neoplasias Encefálicas/patología , Barrera Hematoencefálica/metabolismo , Muerte Celular , Antineoplásicos/uso terapéutico , Proliferación Celular , Apoptosis , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cancer Res ; 83(1): 103-116, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36264173

RESUMEN

Sunitinib resistance remains a serious challenge to the treatment of advanced and metastatic renal cell carcinoma (RCC), yet the mechanisms underlying this resistance are not fully understood. Here, we report that the long noncoding RNA IGFL2-AS1 is a driver of therapy resistance in RCC. IGFL2-AS1 was highly upregulated in sunitinib-resistant RCC cells and was associated with poor prognosis in patients with clear cell RCC (ccRCC) who received sunitinib therapy. IGFL2-AS1 enhanced TP53INP2 expression by competitively binding to hnRNPC, a multifunctional RNA-binding protein that posttranscriptionally suppresses TP53INP2 expression through alternative splicing. Upregulated TP53INP2 enhanced autophagy and ultimately led to sunitinib resistance. Meanwhile, IGFL2-AS1 was packaged into extracellular vesicles through hnRNPC, thus transmitting sunitinib resistance to other cells. N6-methyladenosine modification of IGFL2-AS1 was critical for its interaction with hnRNPC. In a patient-derived xenograft model of sunitinib-resistant ccRCC, injection of chitosan-solid lipid nanoparticles containing antisense oligonucleotide-IGFL2-AS1 successfully reversed sunitinib resistance. These findings indicate a novel molecular mechanism of sunitinib resistance in RCC and suggest that IGFL2-AS1 may serve as a prognostic indicator and potential therapeutic target to overcome resistance. SIGNIFICANCE: Extracellular vesicle-packaged IGFL2-AS1 promotes sunitinib resistance by regulating TP53INP2-triggered autophagy, implicating this lncRNA as a potential therapeutic target in renal cell carcinoma.


Asunto(s)
Carcinoma de Células Renales , Vesículas Extracelulares , Neoplasias Renales , ARN Largo no Codificante , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Sunitinib/farmacología , Sunitinib/uso terapéutico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Vesículas Extracelulares/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/metabolismo
18.
Oncogene ; 42(22): 1802-1820, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37046045

RESUMEN

Metastasis is the main cause of mortality in renal cell carcinoma (RCC). Circular RNAs (circRNAs) involvement in RCC metastasis has been described, although the underlying mechanisms remain unknown. We evaluated recurring lung-metastasis cases using patient-derived xenograft models and isolated a highly metastatic clone. CircSPIRE1 was identified as a metastasis-inhibiting circRNA in clinical cohort and xenograft models. Mechanistically, circSPIRE1 suppressed mesenchymal state through regulating ELAV like RNA binding protein 1-mRNA binding, and upregulating polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3) and KH domain RNA binding protein (QKI) expression. GALNT3 promoted glycosylation and cytomembrane localization of E-cadherin. QKI formed a positive feedback loop to enhance circSPIRE1 expression. Meanwhile, exosomal circSPIRE1 suppressed angiogenesis and vessel permeability. Our work reveals a non-canonical route for circRNAs in RCC to suppress metastasis. Furthermore, a nanomedicine consisting of circSPIRE1 plasmid suppressed metastasis formation. In conclusion, circSPIRE1 may be a predictor of metastasis and a potential therapeutic target of metastatic RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Animales , Humanos , Cadherinas/genética , Cadherinas/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Glicosilación , Neoplasias Renales/patología , MicroARNs/genética , Recurrencia Local de Neoplasia/genética , ARN Circular/genética , ARN Circular/metabolismo
19.
Nat Commun ; 14(1): 7069, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923710

RESUMEN

Chemo-activation of mitochondrial ClpP exhibits promising anticancer properties. However, we are currently unaware of any studies using selective and potent ClpP activators in lung squamous cell carcinoma. In this work, we report on such an activator, ZK53, which exhibits therapeutic effects on lung squamous cell carcinoma in vivo. The crystal structure of ZK53/ClpP complex reveals a π-π stacking effect that is essential for ligand binding selectively to the mitochondrial ClpP. ZK53 features on a simple scaffold, which is distinct from the activators with rigid scaffolds, such as acyldepsipeptides and imipridones. ZK53 treatment causes a decrease of the electron transport chain in a ClpP-dependent manner, which results in declined oxidative phosphorylation and ATP production in lung tumor cells. Mechanistically, ZK53 inhibits the adenoviral early region 2 binding factor targets and activates the ataxia-telangiectasia mutated-mediated DNA damage response, eventually triggering cell cycle arrest. Lastly, ZK53 exhibits therapeutic effects on lung squamous cell carcinoma cells in xenograft and autochthonous mouse models.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Animales , Ratones , Humanos , Ciclo Celular , Puntos de Control del Ciclo Celular , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Pulmón/patología , Endopeptidasa Clp/metabolismo
20.
Adv Sci (Weinh) ; 10(11): e2206792, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36775874

RESUMEN

High lymphocyte infiltration and immunosuppression characterize the tumor microenvironment (TME) in renal cell carcinoma (RCC). There is an urgent need to elucidate how tumor cells escape the immune attack and to develop novel therapeutic targets to enhance the efficacy of immune checkpoint blockade (ICB) in RCC. Overactivated IFN-γ-induced JAK/STAT signaling involves in such TME, but the underlying mechanisms remain elusive. Here, EH domain-binding protein 1-like protein 1 (EHBP1L1) is identified as a crucial mediator of IFN-γ/JAK1/STAT1/PD-L1 signaling in RCC. EHBP1L1 is highly expressed in RCC, and high EHBP1L1 expression levels are correlated with poor prognosis and resistance to ICB. EHBP1L1 depletion significantly inhibits tumor growth, which is attributed to enhanced CD8+ T cell-mediated antitumor immunity. Mechanistically, EHBP1L1 interacts with and stabilizes JAK1. By competing with SOCS1, EHBP1L1 protects JAK1 from proteasomal degradation, which leads to elevated JAK1 protein levels and JAK1/STAT1/PD-L1 signaling activity, thereby forming an immunosuppressive TME. Furthermore, the combination of EHBP1L1 inhibition and ICB reprograms the immunosuppressive TME and prevents tumor immune evasion, thus significantly reinforcing the therapeutic efficacy of ICB in RCC patient-derived xenograft (PDX) models. These findings reveal the vital role of EHBP1L1 in immune evasion in RCC, which may be a potential complement for ICB therapy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Escape del Tumor , Humanos , Antígeno B7-H1/metabolismo , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Evasión Inmune , Janus Quinasa 1/metabolismo , Neoplasias Renales/inmunología , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Transducción de Señal , Escape del Tumor/genética , Escape del Tumor/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA