Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Biol Rep ; 50(1): 235-244, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36322239

RESUMEN

BACKGROUND: Myelodysplastic syndromes (MDS) is defined as heterogenous disease, it contains heterogenous leukemic stem cells with various degree of cell differentiation. The perturbation of genes involved in myeloid progenitor cell growth, differentiation and proliferation lead to morphologic dysplasia, maturation arrest, ineffective hematopoiesis hence the cytopenias and propensity to develop into acute myeloid leukemia (AML). Heterogeneous subsets of MDS patients have been defined by their clinical and biologic abnormalities. These different features lead to the development of different prognostic system; however, these approaches are limited in predicting clinical course, and management of patients remains challenging given the uncertainty of the time course of disease progression. It is of importance to identify transcriptomic marker causing maturational and differentiation arrest which could help in understanding the pathogenesis of disease. METHODS AND RESULTS: We have studied differential gene expression profiles (GEPs) in CD34 + marrow cells from myelodysplastic syndrome (MDS) patients (n = 14) and control CD34 + cells using Affymetrix Human Clariom S microarray with 20,000 well annotated genes. We found 4165 genes significantly (p < 0.05) differentially expressed in MDS. Using stringent bioinformatics analyses, we were able to identify few genes (MAPK8, JUNB, mTOR) which were differentially upregulated i.e. 5.39, 73.61 and 2.7 fold change observed in MDS than control and also validated (n = 60) these genes by RT - qPCR. Kaplan - Meier survival analysis indicated that MAPK8 and JUNB could be poor prognostic marker as patients with increased expression showed poor survival, whereas surprisingly mTOR increased expression proved to be good prognostic marker. The correlation analysis showed that the level of gene (MAPK8, JUNB, mTOR) expression was significantly (p ≤ 0.05) associated with frequency of genetic lesions. Interestingly the increased expression of MAPK8 was significantly accompanied with ASXL1 gene mutation. CONCLUSION: Our study showed an elevation of TNF and AMPK signalling pathways in MDS. TNF signalling might be mediating the proliferative advantage to myeloid clonal cells (mutation carrying cells) over normal cells, whereas, AMPK signalling could be acting as protector against it (favouring normal cells). Hence it would be interesting to explore the functions and pathways associated with mTOR, AMPK, MAPK8 and JUNB in myelopoiesis related diseases like MDS.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Proteínas Quinasas Activadas por AMP , Síndromes Mielodisplásicos/genética , Leucemia Mieloide Aguda/metabolismo , Médula Ósea/metabolismo , Serina-Treonina Quinasas TOR/genética
2.
BMC Med Genomics ; 15(1): 2, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34980106

RESUMEN

BACKGROUND: Oculocutaneous albinism (OCA) is an autosomal recessive disorder characterized by hypo-pigmentation of skin, hair, and eyes. The OCA clinical presentation is due to a deficiency of melanin biosynthesis. Intellectual disability (ID) in OCA cases is a rare clinical presentation and appropriate diagnosis of ID is challenging through clinical examination. We report an Indian family with a rare co-inheritance of OCA1B and ID due to a novel TYR gene variant and chromosomal copy number variations. METHODS: We have done a study on three siblings (2 males and 1 female) of a family where all of them presented with hypopigmented skin, hair and eyes. The male children and their father was affected with ID. Targeted exome sequencing and multiplex ligation-dependent probe amplification analysis were carried out to identify the OCA1B and ID associated genomic changes. Further Array-CGH was performed using SurePrint G3 Human CGH + SNP, 8*60 K array. RESULTS: A rare homozygous deletion of exon 3 in TYR gene causing OCA1B was identified in all three children. The parents were found to be heterozygous carriers. The Array-CGH analysis revealed paternally inherited heterozygous deletion(1.9 MB) of 15q11.1-> 15q11.2 region in all three children. Additionally, paternally inherited heterozygous deletion(2.6 MB)of 10q23.2-> 10q23.31 region was identified in the first male child; this may be associated with ID as the father and the child both presented with ID. While the 2nd male child had a denovo duplication of 13q31.1-> 13q31.3 chromosomal region. CONCLUSION: A rare homozygous TYR gene exon 3 deletion in the present study is the cause of OCA1B in all three children, and the additional copy number variations are associated with the ID. The study highlights the importance of combinational genetic approaches for diagnosing two different co-inherited disorders (OCA and ID). Hence, OCA cases with additional clinical presentation need to be studied in-depth forthe appropriate management of the disease.


Asunto(s)
Albinismo Oculocutáneo , Discapacidad Intelectual , Albinismo Oculocutáneo/diagnóstico , Albinismo Oculocutáneo/genética , Niño , Variaciones en el Número de Copia de ADN , Exones , Femenino , Homocigoto , Humanos , Discapacidad Intelectual/genética , Masculino , Monofenol Monooxigenasa , Mutación , Linaje , Eliminación de Secuencia
3.
Sci Rep ; 12(1): 5925, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396491

RESUMEN

Myelodysplastic syndromes (MDS) are a group of clonal hematological disease with high risk of progression to AML. Accurate risk stratification is of importance for the proper management of MDS. Genetic lesions (Cytogenetic and Molecular mutations) are known to help in prognosticating the MDS patients. We have studied 152 MDS patients using cytogenetics and next generation sequencing (NGS). These patients were evaluated and as per cytogenetic prognostic group, majority (92.1%) of the patients classified as good (81.6%) and intermediate (10.5%) group. The NGS identified 38 different gene mutations in our cohort. Among 111 MDS patients with mutations, the most frequent mutated genes were SF3B1 (25.2%), SRSF2 (19%) U2AF1 (14.4%) ASXL1 (9.9%) RUNX1 (9.9%) TET2 (9%), TP53 (9%), ATM (6.3%), NRAS (5.4%) and JAK2/3 (5.4%). The survival analysis revealed that the mutations in TP53, JAK2/3, KRAS, NRAS and ASXL1 were significantly (P < 0.05) associated with poor survival of the patients. The univariate cox and multivariate cox analysis of our study suggested that the age, marrow morphology, cytogenetic and gene mutations with IPSS-R should be considered for prognosticating the MDS patients. We have proposed M-IPSS-R which changed the risk stratification i.e. 66.3% patients had decreased risk whereas 33.75% showed increased risk compared to IPSS-R. The survival analysis also showed that the M-IPSS-R were more significant in separating the patients as per their risk than the IPSS-R alone. The change in risk stratification could help in proper strategy for the treatment planning.


Asunto(s)
Síndromes Mielodisplásicos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Pronóstico , Análisis de Supervivencia
6.
Curr Opin Gastroenterol ; 19(1): 4-10, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15699887

RESUMEN

This review covers progress in identifying Helicobacter pylori-derived factors that are involved in survival and virulence of the organism and in elucidating host response pathways that can limit the infection but are also susceptible to dysregulation. Recent work has identified genes of the cytotoxin-associated gene (cag) pathogenicity island (PAI) involved in regulating signaling, interleukin-8 secretion, and phenotypic events in epithelial cells. New roles in pathogenesis have been recognized for vacuolating toxin A (VacA) and urease, H. pylori membrane and secreted factors, and host epithelial surface molecules. Molecular pathways involved in H. pylori-induced apoptosis in epithelial cells, T cells, and macrophages are being dissected. Activation of toll-like receptors and bacterial factors involved in nitric oxide (NO) and reactive oxygen species induction were also described. The ability of H. pylori to limit NO production by several mechanisms may be an important part of its ability to evade the host immune response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA