Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 583(7818): 852-857, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32699416

RESUMEN

Complex organisms can rapidly induce select genes in response to diverse environmental cues. This regulation occurs in the context of large genomes condensed by histone proteins into chromatin. The sensing of pathogens by macrophages engages conserved signalling pathways and transcription factors to coordinate the induction of inflammatory genes1-3. Enriched integration of histone H3.3, the ancestral histone H3 variant, is a general feature of dynamically regulated chromatin and transcription4-7. However, how chromatin is regulated at induced genes, and what features of H3.3 might enable rapid and high-level transcription, are unknown. The amino terminus of H3.3 contains a unique serine residue (Ser31) that is absent in 'canonical' H3.1 and H3.2. Here we show that this residue, H3.3S31, is phosphorylated (H3.3S31ph) in a stimulation-dependent manner along rapidly induced genes in mouse macrophages. This selective mark of stimulation-responsive genes directly engages the histone methyltransferase SETD2, a component of the active transcription machinery, and 'ejects' the elongation corepressor ZMYND118,9. We propose that features of H3.3 at stimulation-induced genes, including H3.3S31ph, provide preferential access to the transcription apparatus. Our results indicate dedicated mechanisms that enable rapid transcription involving the histone variant H3.3, its phosphorylation, and both the recruitment and the ejection of chromatin regulators.


Asunto(s)
Histonas/química , Histonas/metabolismo , Transcripción Genética , Regulación hacia Arriba/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Quinasa I-kappa B/química , Quinasa I-kappa B/metabolismo , Macrófagos/metabolismo , Masculino , Metilación , Ratones , Modelos Moleculares , Fosforilación
2.
Mol Cell ; 51(5): 662-77, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-23973327

RESUMEN

The histone H2A-H2B heterodimer is an integral component of the nucleosome. The cellular localization and deposition of H2A-H2B into chromatin is regulated by numerous factors, including histone chaperones such as nucleosome assembly protein 1 (Nap1). We use hydrogen-deuterium exchange coupled to mass spectrometry to characterize H2A-H2B and Nap1. Unexpectedly, we find that at low ionic strength, the α helices in H2A-H2B are frequently sampling partially disordered conformations and that binding to Nap1 reduces this conformational sampling. We identify the interaction surface between H2A-H2B and Nap1 and confirm its relevance both in vitro and in vivo. We show that two copies of H2A-H2B bound to a Nap1 homodimer form a tetramer with contacts between H2B chains similar to those in the four-helix bundle structural motif. The organization of the complex reveals that Nap1 competes with histone-DNA and interhistone interactions observed in the nucleosome, thereby regulating the availability of histones for chromatin assembly.


Asunto(s)
Histonas/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Ensamble y Desensamble de Cromatina , ADN de Hongos/metabolismo , Medición de Intercambio de Deuterio , Chaperonas de Histonas , Histonas/química , Proteína 1 de Ensamblaje de Nucleosomas/genética , Nucleosomas , Concentración Osmolar , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Estabilidad Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Soluciones
3.
Mol Cell Proteomics ; 15(3): 918-31, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26685127

RESUMEN

The centromere is the locus on the chromosome that acts as the essential connection point between the chromosome and the mitotic spindle. A histone H3 variant, CENP-A, defines the location of the centromere, but centromeric chromatin consists of a mixture of both CENP-A-containing and H3-containing nucleosomes. We report a surprisingly uniform pattern of primarily monomethylation on lysine 20 of histone H4 present in short polynucleosomes mixtures of CENP-A and H3 nucleosomes isolated from functional centromeres. Canonical H3 is not a component of CENP-A-containing nucleosomes at centromeres, so the H3 we copurify from these preparations comes exclusively from adjacent nucleosomes. We find that CENP-A-proximal H3 nucleosomes are not uniformly modified but contain a complex set of PTMs. Dually modified K9me2-K27me2 H3 nucleosomes are observed at the centromere. Side-chain acetylation of both histone H3 and histone H4 is low at the centromere. Prior to assembly at centromeres, newly expressed CENP-A is sequestered for a large portion of the cell cycle (late S-phase, G2, and most of mitosis) in a complex that contains its partner, H4, and its chaperone, HJURP. In contrast to chromatin associated centromeric histone H4, we show that prenucleosomal CENP-A-associated histone H4 lacks K20 methylation and contains side-chain and α-amino acetylation. We show HJURP displays a complex set of serine phosphorylation that may potentially regulate the deposition of CENP-A. Taken together, our findings provide key information regarding some of the key components of functional centromeric chromatin.


Asunto(s)
Autoantígenos/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , Ciclo Celular , Proteína A Centromérica , Células HeLa , Humanos , Lisina/metabolismo , Metilación , Serina/metabolismo , Espectrometría de Masa por Ionización de Electrospray
4.
Proc Natl Acad Sci U S A ; 110(29): 11827-32, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818633

RESUMEN

Centromeres are chromosomal loci required for accurate segregation of sister chromatids during mitosis. The location of the centromere on the chromosome is not dependent on DNA sequence, but rather it is epigenetically specified by the histone H3 variant centromere protein A (CENP-A). The N-terminal tail of CENP-A is highly divergent from other H3 variants. Canonical histone N termini are hotspots of conserved posttranslational modification; however, no broadly conserved modifications of the vertebrate CENP-A tail have been previously observed. Here, we report three posttranslational modifications on human CENP-A N termini using high-resolution MS: trimethylation of Gly1 and phosphorylation of Ser16 and Ser18. Our results demonstrate that CENP-A is subjected to constitutive initiating methionine removal, similar to other H3 variants. The nascent N-terminal residue Gly1 becomes trimethylated on the α-amino group. We demonstrate that the N-terminal RCC1 methyltransferase is capable of modifying the CENP-A N terminus. Methylation occurs in the prenucleosomal form and marks the majority of CENP-A nucleosomes. Serine 16 and 18 become phosphorylated in prenucleosomal CENP-A and are phosphorylated on asynchronous and mitotic nucleosomal CENP-A and are important for chromosome segregation during mitosis. The double phosphorylation motif forms a salt-bridged secondary structure and causes CENP-A N-terminal tails to form intramolecular associations. Analytical ultracentrifugation of phospho-mimetic CENP-A nucleosome arrays demonstrates that phosphorylation results in greater intranucleosome associations and counteracts the hyperoligomerized state exhibited by unmodified CENP-A nucleosome arrays. Our studies have revealed that the major modifications on the N-terminal tail of CENP-A alter the physical properties of the chromatin fiber at the centromere.


Asunto(s)
Autoantígenos/genética , Autoantígenos/metabolismo , Centrómero/química , Cromatina/química , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética/genética , Conformación Molecular , Procesamiento Proteico-Postraduccional/genética , Autoantígenos/aislamiento & purificación , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteína A Centromérica , Cromatografía Líquida de Alta Presión , Proteínas Cromosómicas no Histona/aislamiento & purificación , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Espectrometría de Masas , Metilación , Proteínas Nucleares/metabolismo , Fosforilación , Ultracentrifugación
5.
Proc Natl Acad Sci U S A ; 108(40): 16588-93, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21949362

RESUMEN

Centromere protein A (CENP-A) is a histone H3 variant that marks centromere location on the chromosome. To study the subunit structure and folding of human CENP-A-containing chromatin, we generated a set of nucleosomal arrays with canonical core histones and another set with CENP-A substituted for H3. At the level of quaternary structure and assembly, we find that CENP-A arrays are composed of octameric nucleosomes that assemble in a stepwise mechanism, recapitulating conventional array assembly with canonical histones. At intermediate structural resolution, we find that CENP-A-containing arrays are globally condensed relative to arrays with the canonical histones. At high structural resolution, using hydrogen-deuterium exchange coupled to mass spectrometry (H/DX-MS), we find that the DNA superhelical termini within each nucleosome are loosely connected to CENP-A, and we identify the key amino acid substitution that is largely responsible for this behavior. Also the C terminus of histone H2A undergoes rapid hydrogen exchange relative to canonical arrays and does so in a manner that is independent of nucleosomal array folding. These findings have implications for understanding CENP-A-containing nucleosome structure and higher-order chromatin folding at the centromere.


Asunto(s)
Autoantígenos/genética , Centrómero/genética , Proteínas Cromosómicas no Histona/genética , ADN Superhelicoidal/metabolismo , Conformación de Ácido Nucleico , Nucleosomas/genética , Conformación Proteica , Proteína A Centromérica , Electroforesis en Gel de Poliacrilamida , Epigenómica , Histonas/química , Histonas/genética , Humanos , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Nucleosomas/ultraestructura , Ultracentrifugación
6.
J Biol Chem ; 286(21): 18938-48, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21467044

RESUMEN

Mass spectrometry-based hydrogen/deuterium exchange (H/DX) has been used to define the polypeptide backbone dynamics of full-length methyl CpG binding protein 2 (MeCP2) when free in solution and when bound to unmethylated and methylated DNA. Essentially the entire MeCP2 polypeptide chain underwent H/DX at rates faster than could be measured (i.e. complete exchange in ≤10 s), with the exception of the methyl DNA binding domain (MBD). Even the H/DX of the MBD was rapid compared with that of a typical globular protein. Thus, there is no single tertiary structure of MeCP2. Rather, the full-length protein rapidly samples many different conformations when free in solution. When MeCP2 binds to unmethylated DNA, H/DX is slowed several orders of magnitude throughout the MBD. Binding of MeCP2 to methylated DNA led to additional minor H/DX protection, and only locally within the N-terminal portion of the MBD. H/DX also was used to examine the structural dynamics of the isolated MBD carrying three frequent mutations associated with Rett syndrome. The effects of the mutations ranged from very little (R106W) to a substantial increase in conformational sampling (F155S). Our H/DX results have yielded fine resolution mapping of the structure of full-length MeCP2 in the absence and presence of DNA, provided a biochemical basis for understanding MeCP2 function in normal cells, and predicted potential approaches for the treatment of a subset of RTT cases caused by point mutations that destabilize the MBD.


Asunto(s)
Metilación de ADN , ADN/química , Proteína 2 de Unión a Metil-CpG/química , Sustitución de Aminoácidos , ADN/genética , ADN/metabolismo , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Mutación Missense , Mapeo Peptídico , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Síndrome de Rett/genética , Síndrome de Rett/metabolismo
7.
Prog Mol Subcell Biol ; 48: 1-32, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19521810

RESUMEN

The centromere serves as the control locus for chromosome segregation at mitosis and meiosis. In most eukaryotes, including mammals, the location of the centromere is epigenetically defined. The contribution of both genetic and epigenetic determinants to centromere function is the subject of current investigation in diverse eukaryotes. Here we highlight key findings from several organisms that have shaped the current view of centromeres, with special attention to experiments that have elucidated the epigenetic nature of their specification. Recent insights into the histone H3 variant, CENP-A, which assembles into centromeric nucleosomes that serve as the epigenetic mark to perpetuate centromere identity, have added important mechanistic understanding of how centromere identity is initially established and subsequently maintained in every cell cycle.


Asunto(s)
Centrómero , Epigénesis Genética , Animales , Autoantígenos/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cromosomas Artificiales Humanos , Drosophila melanogaster/genética , Reordenamiento Génico , Humanos , Nucleosomas/genética , Nucleosomas/metabolismo , Plantas/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética
8.
J Cell Biol ; 208(5): 521-31, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25713413

RESUMEN

The centromere-defined by the presence of nucleosomes containing the histone H3 variant, CENP-A-is the chromosomal locus required for the accurate segregation of chromosomes during cell division. Although the sequence determinants of human CENP-A required to maintain a centromere were reported, those that are required for early steps in establishing a new centromere are unknown. In this paper, we used gain-of-function histone H3 chimeras containing various regions unique to CENP-A to investigate early events in centromere establishment. We targeted histone H3 chimeras to chromosomally integrated Lac operator sequences by fusing each of the chimeras to the Lac repressor. Using this approach, we found surprising contributions from a small portion of the N-terminal tail and the CENP-A targeting domain in the initial recruitment of two essential constitutive centromere proteins, CENP-C and CENP-T. Our results indicate that the regions of CENP-A required for early events in centromere establishment differ from those that are required for maintaining centromere identity.


Asunto(s)
Autoantígenos/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Autoantígenos/genética , Línea Celular Tumoral , Centrómero/genética , Proteína A Centromérica , Proteínas Cromosómicas no Histona/genética , Histonas/genética , Humanos , Estructura Terciaria de Proteína
9.
Elife ; 3: e02137, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25027692

RESUMEN

The centromere, responsible for chromosome segregation during mitosis, is epigenetically defined by CENP-A containing chromatin. The amount of centromeric CENP-A has direct implications for both the architecture and epigenetic inheritance of centromeres. Using complementary strategies, we determined that typical human centromeres contain ∼400 molecules of CENP-A, which is controlled by a mass-action mechanism. This number, despite representing only ∼4% of all centromeric nucleosomes, forms a ∼50-fold enrichment to the overall genome. In addition, although pre-assembled CENP-A is randomly segregated during cell division, this amount of CENP-A is sufficient to prevent stochastic loss of centromere function and identity. Finally, we produced a statistical map of CENP-A occupancy at a human neocentromere and identified nucleosome positions that feature CENP-A in a majority of cells. In summary, we present a quantitative view of the centromere that provides a mechanistic framework for both robust epigenetic inheritance of centromeres and the paucity of neocentromere formation.DOI: http://dx.doi.org/10.7554/eLife.02137.001.


Asunto(s)
Centrómero , Cromatina/química , Alelos , Autoantígenos/genética , Autoantígenos/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Diploidia , Dosificación de Gen , Humanos , Procesos Estocásticos
10.
Nat Struct Mol Biol ; 20(6): 687-95, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23644596

RESUMEN

The centromere is the chromosomal locus that ensures fidelity in genome transmission at cell division. Centromere protein A (CENP-A) is a histone H3 variant that specifies centromere location independently of DNA sequence. Conflicting evidence has emerged regarding the histone composition and stoichiometry of CENP-A nucleosomes. Here we show that the predominant form of the CENP-A particle at human centromeres is an octameric nucleosome. CENP-A nucleosomes are very highly phased on α-satellite 171-base-pair monomers at normal centromeres and also display strong positioning at neocentromeres. At either type of functional centromere, CENP-A nucleosomes exhibit similar DNA-wrapping behavior, as do octameric CENP-A nucleosomes reconstituted with recombinant components, having looser DNA termini than those on conventional nucleosomes containing canonical histone H3. Thus, the fundamental unit of the chromatin that epigenetically specifies centromere location in mammals is an octameric nucleosome with loose termini.


Asunto(s)
Autoantígenos/análisis , Centrómero/química , Proteínas Cromosómicas no Histona/análisis , Nucleosomas/química , Multimerización de Proteína , Proteína A Centromérica , Perfilación de la Expresión Génica , Humanos , Modelos Biológicos , Modelos Moleculares
11.
Dev Cell ; 22(4): 749-62, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22406139

RESUMEN

Centromeres are defined by the presence of chromatin containing the histone H3 variant, CENP-A, whose assembly into nucleosomes requires the chromatin assembly factor HJURP. We find that whereas surface-exposed residues in the CENP-A targeting domain (CATD) are the primary sequence determinants for HJURP recognition, buried CATD residues that generate rigidity with H4 are also required for efficient incorporation into centromeres. HJURP contact points adjacent to the CATD on the CENP-A surface are not used for binding specificity but rather to transmit stability broadly throughout the histone fold domains of both CENP-A and H4. Furthermore, an intact CENP-A/CENP-A interface is a requirement for stable chromatin incorporation immediately upon HJURP-mediated assembly. These data offer insight into the mechanism by which HJURP discriminates CENP-A from bulk histone complexes and chaperones CENP-A/H4 for a substantial portion of the cell cycle prior to mediating chromatin assembly at the centromere.


Asunto(s)
Autoantígenos/química , Autoantígenos/metabolismo , Centrómero/fisiología , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/química , Secuencia de Aminoácidos , Sitios de Unión , Ciclo Celular , Proteína A Centromérica , Células HeLa , Histonas/metabolismo , Humanos , Immunoblotting , Espectrometría de Masas , Datos de Secuencia Molecular , Nucleosomas/fisiología , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
12.
Curr Biol ; 21(13): 1158-65, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21723127

RESUMEN

Maintenance of genome stability during cell division depends on establishing correct attachments between chromosomes and spindle microtubules. Correct, bioriented attachments are stabilized, whereas incorrect attachments are selectively destabilized. This process relies largely on increased phosphorylation of kinetochore substrates of Aurora B kinase at misaligned versus aligned kinetochores. Current models explain this differential phosphorylation by spatial changes in the position of substrates relative to a constant pool of kinase at the inner centromere. However, these models are based on studies in aneuploid cells. We show that normal diploid cells have a more robust error-correction machinery. Aurora B is enriched at misaligned centromeres in these cells, and the dynamic range of Aurora B substrate phosphorylation at misaligned versus aligned kinetochores is increased. These findings indicate that in addition to Aurora B regulating kinetochore-microtubule binding, the kinetochore also controls Aurora B recruitment to the inner centromere. We show that this recruitment depends on both activity of Plk1, a kinetochore-localized kinase, and activity of Aurora B itself. Our results suggest a feedback mechanism in which Aurora B both regulates and is regulated by chromosome attachment to the spindle, which amplifies the differential phosphorylation of kinetochore substrates and increases the efficiency of error correction.


Asunto(s)
Cromosomas Humanos/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Aurora Quinasa B , Aurora Quinasas , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Línea Celular , Diploidia , Retroalimentación Fisiológica , Inestabilidad Genómica , Humanos , Microtúbulos/metabolismo , Modelos Biológicos , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Huso Acromático/metabolismo , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA