Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Immunity ; 43(4): 647-59, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26474655

RESUMEN

Pattern-recognition receptors (PRRs) including Toll-like receptors, RIG-I-like receptors, and cytoplasmic DNA receptors are essential for protection against pathogens but require tight control to avert inflammatory diseases. The mechanisms underlying this strict regulation are unclear. MYSM1 was previously described as a key component of epigenetic signaling machinery. We found that in response to microbial stimuli, MYSM1 accumulated in the cytoplasm where it interacted with and inactivated TRAF3 and TRAF6 complexes to terminate PRR pathways for pro-inflammatory and type I interferon responses. Consequently, Mysm1 deficiency in mice resulted in hyper-inflammation and enhanced viral clearance but also susceptibility to septic shock. We identified two motifs in MYSM1 that were essential for innate immune suppression: the SWIRM domain that interacted with TRAF3 and TRAF6 and the metalloproteinase domain that removed K63 polyubiquitins. This study identifies MYSM1 as a key negative regulator of the innate immune system that guards against an overzealous self-destructive immune response.


Asunto(s)
Endopeptidasas/inmunología , Inmunidad Innata/inmunología , Infecciones/inmunología , Inflamación/inmunología , Factor 3 Asociado a Receptor de TNF/antagonistas & inhibidores , Factor 6 Asociado a Receptor de TNF/antagonistas & inhibidores , Animales , Citoplasma/metabolismo , Susceptibilidad a Enfermedades , Endopeptidasas/química , Endopeptidasas/deficiencia , Endopeptidasas/genética , Regulación de la Expresión Génica/inmunología , Interferón Tipo I/inmunología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Ratones , Ratones Transgénicos , Modelos Inmunológicos , Complejo de la Endopetidasa Proteasomal , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteolisis , Células RAW 264.7 , Interferencia de ARN , ARN Interferente Pequeño/genética , Receptores de Reconocimiento de Patrones/inmunología , Choque Séptico/inmunología , Factor 3 Asociado a Receptor de TNF/química , Factor 6 Asociado a Receptor de TNF/química , Transactivadores , Transfección , Proteasas Ubiquitina-Específicas , Ubiquitinación , Estomatitis Vesicular/inmunología , Vesiculovirus/inmunología
2.
EMBO J ; 38(21): e102718, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31544964

RESUMEN

DNA repair via homologous recombination (HR) is indispensable for genome integrity and cell survival but if unrestrained can result in undesired chromosomal rearrangements. The regulatory mechanisms of HR are not fully understood. Cyclic GMP-AMP synthase (cGAS) is best known as a cytosolic innate immune sensor critical for the outcome of infections, inflammatory diseases, and cancer. Here, we report that cGAS is primarily a chromatin-bound protein that inhibits DNA repair by HR, thereby accelerating genome destabilization, micronucleus generation, and cell death under conditions of genomic stress. This function is independent of the canonical STING-dependent innate immune activation and is physiologically relevant for irradiation-induced depletion of bone marrow cells in mice. Mechanistically, we demonstrate that inhibition of HR repair by cGAS is linked to its ability to self-oligomerize, causing compaction of bound template dsDNA into a higher-ordered state less amenable to strand invasion by RAD51-coated ssDNA filaments. This previously unknown role of cGAS has implications for understanding its involvement in genome instability-associated disorders including cancer.


Asunto(s)
Muerte Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Inestabilidad Genómica , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/fisiología , Reparación del ADN por Recombinación , Animales , Núcleo Celular/genética , Cromatina/genética , Daño del ADN , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleotidiltransferasas/genética , Transducción de Señal
3.
Cell Microbiol ; 19(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28745813

RESUMEN

The success of pathogens depends on their ability to circumvent immune defences. Francisella tularensis is one of the most infectious bacteria known. The remarkable virulence of Francisella is believed to be due to its capacity to evade or subvert the immune system, but how remains obscure. Here, we show that Francisella triggers but concomitantly inhibits the Toll-like receptor, RIG-I-like receptor, and cytoplasmic DNA pathways. Francisella subverts these pathways at least in part by inhibiting K63-linked polyubiquitination and assembly of TRAF6 and TRAF3 complexes that control the transcriptional responses of pattern recognition receptors. We show that this mode of inhibition requires a functional type VI secretion system and/or the presence of live bacteria in the cytoplasm. The ability of Francisella to enter the cytosol while simultaneously inhibiting multiple pattern recognition receptor pathways may account for the notable capacity of this bacterium to invade and proliferate in the host without evoking a self-limiting innate immune response.


Asunto(s)
Francisella tularensis/inmunología , Evasión Inmune/inmunología , Inmunidad Innata/inmunología , Factor 3 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Francisella tularensis/patogenicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Receptores de Reconocimiento de Patrones/antagonistas & inhibidores , Tularemia/inmunología , Tularemia/microbiología , Tularemia/patología , Sistemas de Secreción Tipo VI/metabolismo , Ubiquitinación/inmunología
4.
Biochem J ; 462(2): 291-302, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24894874

RESUMEN

We previously reported that the HCV (hepatitis C virus) protein NS5A up-regulated mRNA cap binding eIF4F (eukaryotic initiation factor 4F) complex assembly through mTOR (mechanistic target of rapamycin)-4EBP1 (eIF4E-binding protein 1) pathway and that NS5A (non-structural protein 5A) physically interacted with translation apparatus. In the present study, we demonstrate that NS5A co-ordinates a unique assembly of the cap binding protein eIF4E and 40S ribosome to form a complex that we call ENR (eIF4E-NS5A-ribosome). Recruitment of NS5A and eIF4E to 40S ribosome was confirmed by polysome fractionation, subcellular fractionation and high-salt-wash immunoprecipitation. These observations were also confirmed in HCV-infected cells, validating its biological significance. eIF4E phosphorylation was critical for ENR assembly. 80S ribosome dissociation and RNase integrity assays revealed that, once associated, the ENR complex is stable and RNA interaction is dispensable. Both the N- and C-terminal regions of NS5A domain 1 were indispensable for this assembly and for the NS5A-induced HCV IRES (internal ribosome entry site) activation. The present study demonstrates that NS5A initially associates with phosphorylated eIF4E of eIF4F complex and subsequently recruits it to 40S ribosomes. This is the first time the interaction of viral protein with both eIF4E and ribosomes has been reported. We propose that this assembly would determine the outcome of HCV infection and pathogenesis through regulation of viral and host translation.


Asunto(s)
Factor 4E Eucariótico de Iniciación/biosíntesis , Hepacivirus/fisiología , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Línea Celular Tumoral , Factor 4F Eucariótico de Iniciación/metabolismo , Interacciones Huésped-Patógeno , Humanos , Iniciación de la Cadena Peptídica Traduccional , Fosforilación , Polirribosomas/metabolismo , Transporte de Proteínas
5.
J Biol Chem ; 287(7): 5042-58, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22184107

RESUMEN

Initiation, a major rate-limiting step of host protein translation, is a critical target in many viral infections. Chronic hepatitis C virus (HCV) infection results in hepatocellular carcinoma. Translation initiation, up-regulated in many cancers, plays a critical role in tumorigenesis. mTOR is a major regulator of host protein translation. Even though activation of PI3K-AKT-mTOR by HCV non-structural protein 5A (NS5A) is known, not much is understood about the regulation of host translation initiation by this virus. Here for the first time we show that HCV up-regulates host cap-dependent translation machinery in Huh7.5 cells through simultaneous activation of mTORC1 and eukaryotic translation initiation factor 4E (eIF4E) by NS5A. NS5A, interestingly, overexpressed and subsequently hyperphosphorylated 4EBP1. NS5A phosphorylated eIF4E through the p38 MAPK-MNK pathway. Both HCV infection and NS5A expression augmented eIF4F complex assembly, an indicator of cap-dependent translation efficiency. Global translation, however, was not altered by HCV NS5A. 4EBP1 phosphorylation, but not that of S6K1, was uniquely resistant to rapamycin in NS5A-Huh7.5 cells, indicative of an alternate phosphorylation mechanism of 4EBP1. Resistance of Ser-473, but not Thr-308, phosphorylation of AKT to PI3K inhibitors suggested an activation of mTORC2 by NS5A. NS5A associated with eIF4F complex and polysomes, suggesting its active involvement in host translation. This is the first report that implicates an HCV protein in the up-regulation of host translation initiation apparatus through concomitant regulation of multiple pathways. Because both mTORC1 activation and eIF4E phosphorylation are involved in tumorigenesis, we propose that their simultaneous activation by NS5A might contribute significantly to the development of hepatocellular carcinoma.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor 4F Eucariótico de Iniciación/metabolismo , Hepacivirus/metabolismo , Hepatitis C/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Fosfoproteínas/metabolismo , Regulación hacia Arriba , Proteínas no Estructurales Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Antibacterianos/farmacología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Transformación Celular Viral/genética , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4F Eucariótico de Iniciación/genética , Hepacivirus/genética , Hepatitis C/genética , Hepatitis C/patología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Fosfoproteínas/genética , Fosforilación/genética , Polirribosomas/genética , Polirribosomas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Factores de Transcripción , Proteínas no Estructurales Virales/genética
6.
Methods Enzymol ; 625: 299-307, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31455533

RESUMEN

Detection of DNA damage in cells is fundamental for the study of DNA repair and genome-instability associated processes including carcinogenesis. Many studies often rely on cytotoxicity assays to estimate genotoxicity. However, measurements of cytotoxicity, a delayed outcome requiring high threshold genotoxicity to induce, does not provide information about the subtle, early genotoxic effects relevant for mechanistic understanding of DNA repair processes. Here describe how to combine two simple procedures for monitoring the presence of DNA damage in individual eukaryotic cells using: (1) the Comet assay for measuring initial DNA breaks and (2) the Micronucleus assay for detecting delayed outcome DNA breaks in dividing cells. We discuss the principles, experimental design considerations and troubleshooting tips for optimizing these methods. They require standard molecular biology instruments and a fluorescent microscope.


Asunto(s)
Ensayo Cometa/métodos , Pruebas de Micronúcleos/métodos , Animales , Daño del ADN/genética , Genoma de Planta/genética , Inestabilidad Genómica/genética , Humanos
7.
Methods Enzymol ; 625: 339-350, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31455535

RESUMEN

Ubiquitination is a reversible posttranslational modification that regulates nearly all cellular processes. The ubiquitin polypeptide is conjugated via its C-terminus to amine groups of lysine residues on target protein. Additionally, ubiquitins moieties can be conjugated in tandem to the initial ubiquitin via any of its internal lysine residues or N terminal methionine residue, resulting in the formation of polyubiquitin chains with distinct biophysical properties and biological functions. Elucidating the types of polyubiquitin chains present in proteins is essential for understanding their function and mechanism of regulation. Traditionally, ubiqutin modifications have been elucidated by exogenously co-expressing proteins of interest with epitope-tagged ubiquitins mutated in specific lysine residues. However, this strategy is prone experimental artifacts. In this protocol, we describe how to elucidate endogenous ubiquitin modifications. This procedure combines TUBE (Tandem Ubiquitin Binding Entity)-based isolation of ubiquitin conjugates, digestion with linkage specific deubiquitinases and immunoblotting. This procedure is very robust can be applied to profile types and architectural organization polyubiquitin chains present on the any proteins of interest and has been instrumental in elucidating ubiquitin modifications in NOD2 signaling in our recent study (Panda & Gekara, 2018).


Asunto(s)
Poliubiquitina/metabolismo , Proteínas/química , Proteínas/metabolismo , Animales , Bioensayo/métodos , Enzimas Desubicuitinizantes/metabolismo , Humanos , Unión Proteica , Procesamiento Proteico-Postraduccional
8.
Nat Commun ; 9(1): 4654, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405132

RESUMEN

NOD2 is essential for antimicrobial innate immunity and tissue homeostasis, but require tight regulation to avert pathology. A focal point of NOD2 signaling is RIP2, which upon polyubiquitination nucleates the NOD2:RIP2 complex, enabling signaling events leading to inflammation, yet the precise nature and the regulation of the polyubiquitins coordinating this process remain unclear. Here we show that NOD2 signaling involves conjugation of RIP2 with lysine 63 (K63), K48 and M1 polyubiquitin chains, as well as with non-canonical K27 chains. In addition, we identify MYSM1 as a proximal deubiquitinase that attenuates NOD2:RIP2 complex assembly by selectively removing the K63, K27 and M1 chains, but sparing the K48 chains. Consequently, MYSM1 deficient mice have unrestrained NOD2-mediated peritonitis, systemic inflammation and liver injury. This study provides a complete overview of the polyubiquitins in NOD2:RIP2 signaling and reveal MYSM1 as a central negative regulator restricting these polyubiquitins to prevent excessive inflammation.


Asunto(s)
Endopeptidasas/metabolismo , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Citocinas/metabolismo , Endopeptidasas/química , Lisina/metabolismo , Ratones , Poliubiquitina/metabolismo , Unión Proteica , Dominios Proteicos , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Transducción de Señal , Transactivadores , Proteasas Ubiquitina-Específicas , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA