Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int Arch Allergy Immunol ; 185(3): 201-211, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38071964

RESUMEN

INTRODUCTION: Long noncoding RNAs (lncRNAs) have been implicated in the pathogenesis of allergic rhinitis (AR). The current investigation is focused on elucidating the functional impact of a specific lncRNA, FGD5 antisense RNA 1 (FGD5-AS1), on the development and progression of AR through its interaction with miR-223-3p. METHODS: An experimental framework for AR was constructed in both cellular and animal models. Quantitative assessment of FGD5-AS1, miR-223-3p, and COX11 mRNA expression was conducted using real-time quantitative reverse transcription PCR. The expression of inflammatory factors, immunoglobulin E, LTC4, and ECP, was examined using ELISA. Apoptosis in human nasal epithelial cells was assessed by the flow cytometry method. The protein expression of COX11 was examined using Western blotting. Nasal mucosal function was further evaluated by hematoxylin and eosin staining. Furthermore, bioinformatics evaluations, dual-luciferase reporter assays, and a series of experimental procedures unveiled a putative competitive endogenous RNA regulatory mechanism. RESULTS: We found the expression of lncRNA FGD5-AS1 was decreased in AR. In vitro lncRNA FGD5-AS1 attenuated the production of inflammatory cytokines in nasal epithelial cells. Furthermore, elevated FGD5-AS1 expression significantly alleviated AR symptoms by reducing nasal epithelial apoptosis and inflammation. MiR-223-3p was identified as a direct target of FGD5-AS1. Moreover, miRNA-223-3p directly downregulated the expression of COX11 mRNA. Subsequent experiments confirmed that FGD5-AS1 regulated AR through the miR-223-3p/COX11 axis, thereby inhibiting inflammation. CONCLUSION: The FGD5-AS1/miR-223-3p/COX11 axis plays a pivotal role in the pathogenesis of AR, suggesting that FGD5-AS1 could serve as a potential diagnostic biomarker and therapeutic target for AR.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Rinitis Alérgica , Animales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Inflamación/genética , Rinitis Alérgica/genética , ARN Mensajero , Proliferación Celular , Proteínas Transportadoras de Cobre/genética , Proteínas Transportadoras de Cobre/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo
2.
Inflammation ; 43(1): 44-53, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31748850

RESUMEN

Asthma is the most common chronic disease of childhood, chronic airway inflammation; bronchial tissue fibrosis, is a pathological feature common to children asthma, and an emerging data has indicted that autophagy plays critical roles in airway inflammation and fibrosis-mediated airway remodeling. The aim of this study was to examine whether the antifibrotic effect of epithelial microRNAs (miRNAs) relies on regulating autophagy-mediated airway remodeling and to identify the factors involved and the underlying mechanisms. Our results showed miR-30a were downregulated in children with asthma and ovalbumin (OVA) mouse model in parallel with the upregulation of autophagy-related proteins; moreover, we observed miR-30a inhibited the autophagy by downregulated autophagy-related 5 (ATG5). Then, we observed that overexpression of miR-30a suppressed the fibrogenesis and autophagic flux which was stimulated by interleukin-33 (IL-33) in bronchial epithelial cells. In vivo experiments showed that miR-30a overexpression decreased airway remodeling by decreased autophagy. This study uncovered a previously unrecognized antifibrotic role of miR-30a in asthma, in IL-33-induced lung epithelial cells in vitro, and in a murine model of OVA-induced airway inflammation in vivo and explored the underlying mechanisms.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Autofagia , Células Epiteliales/metabolismo , Pulmón/metabolismo , MicroARNs/metabolismo , Adolescente , Animales , Asma/genética , Asma/patología , Asma/fisiopatología , Proteína 5 Relacionada con la Autofagia/genética , Estudios de Casos y Controles , Línea Celular , Niño , Modelos Animales de Enfermedad , Células Epiteliales/patología , Femenino , Fibrosis , Humanos , Pulmón/patología , Pulmón/fisiopatología , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Transducción de Señal
4.
Materials (Basel) ; 12(1)2018 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-30585247

RESUMEN

The paper introduces a semi-analytical approach to analyze free vibration characteristics of stepped functionally graded (FG) paraboloidal shell with general edge conditions. The analytical model is established based on multi-segment partitioning strategy and first-order shear deformation theory. The displacement components along axial direction are represented by Jacobi polynomials, and the Fourier series are utilized to express displacement components in circumferential direction. Based on penalty method about spring stiffness technique, the general edge conditions of doubly curved paraboloidal shell can be easily simulated. The solutions about doubly curved paraboloidal shell were solved by approach of Rayleigh⁻Ritz. Convergence study about boundary parameters, Jacobi parameters et al. are carried out, respectively. The comparison with published literatures, FEM and experiment results show that the present method has good convergence ability and excellent accuracy.

5.
Sci Rep ; 7(1): 12909, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-29018211

RESUMEN

We present an exact method to model the free vibration of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) beams with arbitrary boundary conditions based on first-order shear deformation elasticity theory. Five types of carbon nanotube (CNT) distributions are considered. The distributions are either uniform or functionally graded and are assumed to be continuous through the thickness of the beams. The displacements and rotational components of the beams are expressed as a linear combination of the standard Fourier series and several supplementary functions. The formulation is derived using the modified Fourier series and solved using the strong-form solution and the weak-form solution (i.e., the Rayleigh-Ritz method). Both solutions are applicable to various combinations of boundary constraints, including classical boundary conditions and elastic-supported boundary conditions. The accuracy, efficiency and validity of the two solutions presented are demonstrated via comparison with published results. A parametric study is conducted on the influence of several key parameters, namely, the L/h ratio, CNT volume fraction, CNT distribution, boundary spring stiffness and shear correction factor, on the free vibration of FG-CNTRC beams.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA