Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 25230, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39448631

RESUMEN

The COVID-19 pandemic has led to a surge in medical waste generation, posing hazards to both the environment and global health. The impacts of the COVID-19 pandemic's medical waste hazard may persist long after the pandemic itself subsides. Improper disposal of medical waste can contaminate environment, posing risks to ecosystems and public health. Discarded medical rubber gloves, for example, can become a source of infection, improper disposal of these gloves can escalate the spread of infectious diseases and increase the risk of transmission of the virus to the general public. This study proposes an innovative and sustainable method to reinforce cement mortar by adding recycled glove rubber as an additive to cement mortar to increase its resistance to impact loads. This study conducted uniaxial compression tests, separating hopkinson pressure bar (SHPB) experiments and SEM observations to evaluate the quasi-static compressive strength and dynamic stress of recycled rubber fiber mortar (RRFM) with varying recycled rubber fiber (RRF) contents (0, 1%, 2%, 3%). Strain curves, dynamic increase factor (DIF), energy absorption rules, failure modes, and microstructure of RRFM mixtures. The experimental results demonstrate that with the addition of RRF, the dynamic stress-strain curve flattens and the peak strain gradually increases. The RRFM sample shows stronger toughness. In comparison to regular cement mortar (NM), RRFM has a higher DIF and specific absorbed energy, a faster increase in dynamic compressive strength, and the ability to absorb more energy per unit volume. Under the same impact load, RRFM has fewer and smaller cracks than NM. Scanning electron microscopy (SEM) testing also observed that RRF formed a strong connection pattern with the cement mortar matrix.

2.
Sci Rep ; 14(1): 12573, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822129

RESUMEN

Through tests and micro-observations, the static and dynamic mechanical properties and microstructure of rubber concrete samples modified with varying amounts of silica fume and polypropylene fiber content were explored. The results indicate that incorporation of silica fume and polypropylene fiber can effectively enhance the performance of rubber concrete. Moreover, at 10% and 0.1% of silica fume and polypropylene fiber content respectively, rubber concrete's compressive strength, splitting tensile strength, flexural strength, and dynamic compressive strength reached maxima. Furthermore, microstructure characteristic analysis indicated that inadequate adhesion between rubber particles and the matrix is responsible for compromised bearing capacity in unmodified rubber concrete. However, with the addition of silica fume and polypropylene fiber, the fiber binds the rubber particles closely with the matrix, while the silica fume fills the gaps between the matrix components. This combination results in rubber concrete with a denser internal structure and enhances its bearing capacity significantly.

3.
PLoS One ; 19(4): e0297381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635828

RESUMEN

The new thermal insulating shotcrete is of great significance for the management of thermal damage in deep mines, and its own strength has a greater impact on the roadway insulation and safe production, so it is very necessary to study the shear strength of the new thermal insulating shotcrete under the influence of the deep hot and humid environment and the stress of mining. For the heat-insulating shotcrete, firstly, we carried out the concrete variable angle shear test under different loading rates, which concluded that the shear rate and peak shear stress showed a trend of increasing and then decreasing; as the angle increases, the different rates have a greater impact on the peak shear stress of the specimen. Secondly, the concrete variable angle shear test was carried out under the temperature and humidity cycle, which revealed that the shear strength of thermal insulated shotcrete increased firstly and then decreased with the increase of temperature at the same number of cycles. Finally, the empirical equations between the cohesive force c, the angle of internal friction ϕ and the number of warm and wet cycles n and the temperature of warm and wet cycles T are fitted with the MATLAB software respectively, and the research results provide technical references for the management of geothermal temperature in deep well projects.


Asunto(s)
Calor , Temperatura , Humedad , Estrés Mecánico
4.
Sci Rep ; 14(1): 3279, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332202

RESUMEN

The TRIZ theory was used to accurately discover the problems to be solved in the design of roadway surrounding rock control technology. This paper tried to solve the complex issue of surrounding rock control in deep roadways from a new perspective. Based on the functional component analysis and causal axis analysis of the problem's primary reason, simultaneously, the surrounding rock control technology was optimized through technical contradiction analysis, physical contradiction analysis, and substance and field model analysis. As a result, a fully enclosed wire-shell support technology was proposed. Finally, taking the typical soft rock roadway engineering of Pansan Coal Mine in Huainan Mining Area, Anhui Province, China, as the engineering background, the engineering application and effect evaluation were completed. This paper provides a reference for controlling the instability of deep soft rock roadways in coal mines. A new idea of optimizing roadway support engineering based on TRIZ theory was proposed.

5.
Sci Rep ; 14(1): 22700, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349938

RESUMEN

To study the resistance of rice husk ash-rubber-fiber reinforced concrete (RRFC) to dry-wet cycle/chloride erosion under a hygrothermal environment, the optimal combination was selected by an orthogonal test. The peak strain, residual strain, and fatigue damage strength of the optimal group of RRFC samples under cyclic loading and unloading after dry-wet cycle/chloride erosion under different environments and temperatures were compared and analyzed. After that, microscopic analysis and anti-erosion mechanism analysis were carried out. The results show that the axial peak and residual strain of RRFC specimens increase continuously during the repeated loading-unloading process, and the increase of axial peak and residual strain in the first five cycles is the most obvious. Among them, RRFC has the most significant increase in axial peak strain after 14 dry-wet cycles, which is 11.73%. The rice husk ash reacted with Ca(OH)2 in the specimen to precipitate C-S-H gel, which improved the specimen's corrosion resistance and fatigue resistance. The rubber in the specimen has high elasticity, which reduces the fatigue damage of the specimen during cyclic loading and unloading, thus showing higher fatigue failure strength.

6.
Sci Rep ; 14(1): 25445, 2024 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-39455646

RESUMEN

To investigate the effect of waste glass material particle sizes on the mechanical and durability properties of concrete, a two-phase experimental approach was conducted. First, comprehensive tests were performed to examine the effects of glass sand and glass powder of different particle sizes on concrete performance. Subsequently, based on the experimental results, an orthogonal test was designed to optimize the replacement amounts of composite particle sizes. The results indicated that an appropriate amount of glass sand can enhance the mechanical properties and durability of concrete, while excessive amounts or larger particle sizes may have adverse effects. The pozzolanic effect of glass powder also contributes to performance improvement, but the replacement rate should be limited to 20%. Under composite particle size conditions, the compressive, tensile, and shear strengths of concrete increased by 35.56%, 21.74%, and 13.79%, respectively, while durability significantly improved, with water absorption reduced by 20.73% and chloride ion permeability decreased by 63.10%. At a total replacement rate of 20%, the optimal proportions were determined to be 2.86% for 0.6 mm glass sand, 1.43% for 1.18 mm glass sand, 8.57% for 50-60 µm glass powder, and 7.14% for 60-70 µm glass powder. The incorporation of composite particle sizes improved the microstructure of concrete, thereby enhancing its mechanical and durability properties.

7.
Polymers (Basel) ; 15(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37177212

RESUMEN

Rubber concrete (RC) is a new type of concrete that is currently receiving a lot of attention, solving serious pollution problems by grinding waste tires into granules and adding them to concrete. However, rubber concrete has deficiencies in mechanics and durability, and has been reinforced by adding fibers in many studies. In this study, the mechanical and durability properties of rubber concrete with added polypropylene and basalt fibers (PBRC) were investigated in a series of experiments including apparent morphology, mass, static compressive and tensile tests, ultrasonic non-destructive testing, and scanning electron microscope (SEM) tests under coupled environments of sulfate attack and freeze-thaw. The results showed that the mass loss rate of RC and PBRC gradually increased with the number of freeze-thaw cycles, with more pits and cement paste peeling from the specimen surface. Moreover, the compressive and splitting tensile strengths of RC and PBRC groups exhibited distinct trends, with the former group showing a lower residual strength relative to the latter. The residual compressive strength of the RC group was only 69.4% after 160 freeze-thaw cycles in 5% MgSO4 solution. However, it is worth noting that the addition of too many fibers also had a negative effect on the strength of the rubber concrete. Additionally, the scanning electron microscopy (SEM) results indicated that the fibers restricted the formation of microcracks in the microstructure and curtailed the brittleness of the concrete. This study can provide a valuable reference for the application of environmentally friendly material fibers in recycled aggregate concrete.

8.
Polymers (Basel) ; 15(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37299213

RESUMEN

In order to study the mechanical properties of rice husk ash-rubber-fiber concrete (RRFC) under hygrothermal environment, the optimal group was selected by orthogonal test. The mass loss, relative dynamic elastic modulus analysis, strength analysis, degradation degree analysis after cyclic loading and internal microstructure analysis of the optimal group of RRFC samples after dry-wet cycles under different environments and temperatures were compared and analyzed. The results show that the large specific surface area of rice husk ash optimizes the particle size distribution of RRFC specimens, reacts to form C-S-H gel, enhances the compactness of concrete, and forms a dense structure as a whole. The presence of rubber particles and PVA fibers effectively improves the mechanical properties and fatigue resistance of RRFC. The comprehensive mechanical properties of RRFC with rubber particle size of 1-3 mm, PVA fiber content of 1.2 kg·m-3 and rice husk ash content of 15% are the best. The compressive strength of the specimens after dry-wet cycles in different environments generally increased first and then decreased, reaching a peak at the seventh dry-wet cycle, and the compressive strength of the specimens under chloride salt solution decreased more than that under clear water solution. Thes provided new concrete materials for the construction of highways and tunnels in coastal areas. Under the premise of ensuring the strength and durability of concrete, it is of great practical significance to explore new roads for energy conservation and emission reduction.

9.
Materials (Basel) ; 16(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36676214

RESUMEN

The rubber particles obtained from the grinding of waste tires can replace a portion of the fine aggregates in concrete, thus effectively reducing the level of environmental damage and saving resources. However, when concrete is mixed with rubber, it greatly reduces its strength. In this study, by introducing basalt fiber (BF) and polypropylene fiber (PF) as modified materials in rubberized concrete, the influence of the fiber type/volume ratio on the slump, water absorption, static uniaxial compression, and permeability of the rubberized concrete was tested. The axial compression stress-strain relationship was analyzed, the effect of the fiber type/volume ratio on the energy dissipation of the rubberized concrete during uniaxial compression was expounded, and a stress-strain constitutive model under uniaxial compression was established. The test results showed that the fiber reduces the fluidity and water absorption of the rubberized concrete. Compared with the polypropylene fiber, the basalt fiber increased the strength of the rubberized concrete, while the polypropylene fiber mainly inhibited the expansion and penetration of the macroscopic crack of the rubberized concrete. The mixing of the basalt fiber and polypropylene fiber significantly decreased the release rate of the elastic strain energy of the rubberized concrete, increased the dissipation energy, and thus improved its ductility and toughness. During a loading process under confining pressure, the permeability of the tested specimen decayed exponentially, and the fiber greatly enhanced the anti-permeability of the rubber concrete.

10.
Environ Sci Pollut Res Int ; 29(39): 59173-59189, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35378655

RESUMEN

Rice husk ash concrete (RHAC) is a new type of concrete that has been rapidly gaining acceptance in recent years. In this paper, the improvement effect of rice husk ash (RHA) on the sulfate erosion performance of concrete was confirmed. The ratio of rice husk ash concrete (RHAC) was optimized and compared with ordinary concrete (OC). The performance degradation of 9%RHAC (rice husk ash at 9% by weight of cement) and OC within 135 times erosion dry-wet cycles solution with Na2SO4 at 5% by weight of solution were studied, including the change of apparent phenomena, compressive strength, tensile strength, effective porosity, and dynamic elastic modulus. The microstructure changes of samples before and after sulfate dry-wet cycle were observed by using a scanning electron microscope (SEM). The results show that with the increase of sulfate dry-wet cycle times, the concrete specimen gradually peels off and expands in volume. The compressive strength and tensile strength increase first and then drop sharply, the effective porosity decreases first and then increases, and the relative dynamic elastic modulus increases and then decreases. The reason is that the ettringite and gypsum are formed by the reaction of sulfate intrusion and hydration products under wetting treatment. After drying treatment, ettringite and free water combine to form sodium sulfate. In the early of circulation, ettringite, gypsum, and sodium sulfate fill the internal pores of the concrete and improve the density. As the number of sulfate dry-wet cycles increases, expansion products accumulate, causing structural expansion damage and deterioration of mechanical performance. However, the hydrated calcium silicate hydrate gel was produced by mixing rice husk ash with concrete to improve the material strength and corrosion resistance. The deterioration degree of the 9%RHAC is better than that of OC at all stages. Finally, the damage constitutive models were established, and the accuracy is higher compared with the measured value.


Asunto(s)
Oryza , Sulfato de Calcio , Fuerza Compresiva , Materiales de Construcción , Sulfatos/química , Óxidos de Azufre
11.
Materials (Basel) ; 14(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918276

RESUMEN

In order to study the degradation laws and mechanisms of admixture concretes with single-added SO42- and composite of Mg2+ and SO42-, respectively, the durability tests were conducted on three types of mineral admixture concretes (concretes with single-added metakaolin (MK), single-added ultra-fine fly ash (UFA), and composite of metakaolin and ultra-fine fly ash (MF), and one reference concrete. In these tests, the 10% Na2SO4 solution and the 10% MgSO4 solution were used as the erosion medium, and the drying-wetting circle method was applied. It can be seen from the compressive tests and grey relational analysis that the MK admixture can improve the anti-Na2SO4-erosion capability of the concrete significantly, but weaken its anti-MgSO4-erosion capability; the UFA admixture can improve both the anti-Na2SO4-erosion and the anti-MgSO4-erosion capability of the concrete; and the composite admixture has superimposed effects and can enhance erosion resistance against these two erosion mediums. The phase composition and the changes of the macro morphology and the micro structure during the erosion process caused by mono sulfate ions and complex ions has been observed through X-ray diffraction (XRD), FTIR spectrum (FTIR), and scanning electron microscope (SEM), based on which it was determined that the erosion of single-added SO42- ions can produce erosive outputs of ettringite, gypsum, and mirabilite in the concrete, and cause corner scaling or deformation. Mg2+ and SO42- reacted in the concrete and produced brucite, M-S-H, ettringite, and gypsum, etc. The erosion of complex ions can cause scaling of the cement mortar and aggregate from the surface or the desquamation of corners.

12.
Materials (Basel) ; 14(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34443226

RESUMEN

In order to enhance the corrosion resistance of concrete to chloride salt, 5% NaCl solution was used to corrode ordinary concrete (OC) and rubber concrete (RC) with 5%, 10%, and 15% rubber content, respectively. By testing the compressive strength, mass, chloride ion concentration at different depths and relative dynamic elastic modulus, the erosion mechanism was analyzed by means of SEM scanning and EDS patterns, and the mechanical properties and deterioration degree of ordinary concrete (OC) and rubber concrete (RC) under the corrosion environment of chloride salt were studied. The results show that: the quality of rubber mixed into concrete increases first and then decreases, and rubber can increase the compressive strength of concrete, improve its internal structure. At the same time, the mechanical properties of concrete in the corrosion environment of chloride salt are improved to a certain extent, and the deterioration degree is reduced. Considering the comprehensive performance of OC and RC in the dry-wet alternation mechanism under chloride salt corrosion, the best content of rubber is 10%.

13.
Materials (Basel) ; 13(7)2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32231140

RESUMEN

This study analyses the deterioration of mechanical properties in lightweight concrete after exposure to room temperature (20 C) and high temperature, i.e., up to 1000 C, including changes in visual appearance, loss of mass, and compressive strength. All-lightweight shale ceramsite aggregate concrete (ALWAC) and semi-lightweight shale ceramsite aggregate concrete (SLWAC) are prepared using an absolute volume method to analyse the relationships between relative ultrasonic pulse velocity, loss rate of compressive strength, damage degree, and temperature levels. Our results show that, under high temperature, the lightweight aggregate ceramsite concrete performs better compared to normal concrete. After exposure to 1000 C, the ALWAC shows a strength loss of no more than 80%, while the normal concrete loses its bearing capacity, with a similar strength loss as the SLWAC. Furthermore, the relative ultrasonic pulse velocity and damage degree are used to evaluate the effects of high temperature on the concretes, including the voids and cracks on the surface and inside of the specimens, which induces the deterioration of mechanical properties and contributes to the thermal decomposition of the cementing system and the loss of cohesion at the aggregate interface. Based on internal structure analyses, the results from this study confirm that the lightweight aggregate concrete shows a high residual compressive strength after exposure to the high temperature.

14.
Materials (Basel) ; 13(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32824987

RESUMEN

Glazed hollow bead insulation concrete (GHBC) presents a promising application prospect in terms of its light weight and superior fire resistance. However, only a few studies have focused on the creep behaviour of GHBC exposed to high temperatures. Therefore, in this study, the mechanism of high temperature on GHBC is analysed through a series of tests on uniaxial compression and multistage creep of GHBC, exposed from room temperature up to 800 °C. The results show a decrease in the weight and compressive strength of GHBC as the temperature rises. After 800 °C, the loss of weight and strength reach to 9.67% and 69.84%, respectively. The creep strain and creep rate increase, with a higher target temperature and higher stress level, while the transient deformation modulus, the creep failure threshold stress, and creep duration are reduced significantly. Furthermore, the creep of GHBC exhibits a considerable increase above 600 °C and the creep under the same loading ratio at 600 °C increases by 74.19% compared to the creep at room temperature. Indeed, the higher the temperature, the more sensitive the stress is to the creep. Based on our findings, the Burgers model agrees well with the creep test data at the primary creep and steady-state creep stages, providing a useful reference for the fire resistance design calculation of the GHBC structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA