Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 35(5): 1408-1428, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36748200

RESUMEN

Banana (Musa acuminata) fruits ripening at 30 °C or above fail to develop yellow peels; this phenomenon, called green ripening, greatly reduces their marketability. The regulatory mechanism underpinning high temperature-induced green ripening remains unknown. Here we decoded a transcriptional and post-translational regulatory module that causes green ripening in banana. Banana fruits ripening at 30 °C showed greatly reduced expression of 5 chlorophyll catabolic genes (CCGs), MaNYC1 (NONYELLOW COLORING 1), MaPPH (PHEOPHYTINASE), MaTIC55 (TRANSLOCON AT THE INNER ENVELOPE MEMBRANE OF CHLOROPLASTS 55), MaSGR1 (STAY-GREEN 1), and MaSGR2 (STAY-GREEN 2), compared to those ripening at 20 °C. We identified a MYB transcription factor, MaMYB60, that activated the expression of all 5 CCGs by directly binding to their promoters during banana ripening at 20 °C, while showing a weaker activation at 30 °C. At high temperatures, MaMYB60 was degraded. We discovered a RING-type E3 ligase MaBAH1 (benzoic acid hypersensitive 1) that ubiquitinated MaMYB60 during green ripening and targeted it for proteasomal degradation. MaBAH1 thus facilitated MaMYB60 degradation and attenuated MaMYB60-induced transactivation of CCGs and chlorophyll degradation. By contrast, MaMYB60 upregulation increased CCG expression, accelerated chlorophyll degradation, and mitigated green ripening. Collectively, our findings unravel a dynamic, temperature-responsive MaBAH1-MaMYB60-CCG module that regulates chlorophyll catabolism, and the molecular mechanism underpinning green ripening in banana. This study also advances our understanding of plant responses to high-temperature stress.


Asunto(s)
Musa , Temperatura , Musa/genética , Musa/química , Musa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
2.
Plant Physiol ; 169(4): 2391-408, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26514808

RESUMEN

In contrast to the detailed molecular knowledge available on anthocyanin synthesis, little is known about its catabolism in plants. Litchi (Litchi chinensis) fruit lose their attractive red color soon after harvest. The mechanism leading to quick degradation of anthocyanins in the pericarp is not well understood. An anthocyanin degradation enzyme (ADE) was purified to homogeneity by sequential column chromatography, using partially purified anthocyanins from litchi pericarp as a substrate. The purified ADE, of 116 kD by urea SDS-PAGE, was identified as a laccase (ADE/LAC). The full-length complementary DNA encoding ADE/LAC was obtained, and a polyclonal antibody raised against a deduced peptide of the gene recognized the ADE protein. The anthocyanin degradation function of the gene was confirmed by its transient expression in tobacco (Nicotiana benthamiana) leaves. The highest ADE/LAC transcript abundance was in the pericarp in comparison with other tissues, and was about 1,000-fold higher than the polyphenol oxidase gene in the pericarp. Epicatechin was found to be the favorable substrate for the ADE/LAC. The dependence of anthocyanin degradation by the enzyme on the presence of epicatechin suggests an ADE/LAC epicatechin-coupled oxidation model. This model was supported by a dramatic decrease in epicatechin content in the pericarp parallel to anthocyanin degradation. Immunogold labeling transmission electron microscopy suggested that ADE/LAC is located mainly in the vacuole, with essential phenolic substances. ADE/LAC vacuolar localization, high expression levels in the pericarp, and high epicatechin-dependent anthocyanin degradation support its central role in pigment breakdown during pericarp browning.


Asunto(s)
Antocianinas/metabolismo , Catequina/metabolismo , Frutas/enzimología , Lacasa/metabolismo , Litchi/enzimología , Catecol Oxidasa/metabolismo , Frutas/citología , Frutas/genética , Frutas/fisiología , Lacasa/genética , Litchi/citología , Litchi/genética , Litchi/fisiología , Modelos Moleculares , Oxidación-Reducción , Fenoles/metabolismo , Filogenia , Hojas de la Planta/citología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/fisiología
3.
Mol Plant ; 14(7): 1149-1167, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33857689

RESUMEN

The proteolytic degradation of the photodamaged D1 core subunit during the photosystem II (PSII) repair cycle is well understood, but chlorophyll turnover during D1 degradation remains unclear. Here, we report that Arabidopsis thaliana CHLOROPHYLLASE 1 (CLH1) plays important roles in the PSII repair process. The abundance of CLH1 and CLH2 peaks in young leaves and is induced by high-light exposure. Seedlings of clh1 single and clh1-1/2-2 double mutants display increased photoinhibition after long-term high-light exposure, whereas seedlings overexpressing CLH1 have enhanced light tolerance compared with the wild type. CLH1 is localized in the developing chloroplasts of young leaves and associates with the PSII-dismantling complexes RCC1 and RC47, with a preference for the latter upon exposure to high light. Furthermore, degradation of damaged D1 protein is retarded in young clh1-1/2-2 leaves after 18-h high-light exposure but is rescued by the addition of recombinant CLH1 in vitro. Moreover, overexpression of CLH1 in a variegated mutant (var2-2) that lacks thylakoid protease FtsH2, with which CLH1 interacts, suppresses the variegation and restores D1 degradation. A var2-2 clh1-1/2-2 triple mutant shows more severe variegation and seedling death. Taken together, these results establish CLH1 as a long-sought chlorophyll dephytylation enzyme that is involved in PSII repair and functions in long-term adaptation of young leaves to high-light exposure by facilitating FtsH-mediated D1 degradation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Choque Térmico/metabolismo , Luz , Metaloendopeptidasas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de la radiación , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Fotosíntesis , Hojas de la Planta/enzimología , Protectores contra Radiación , Tilacoides/metabolismo
4.
Sci Rep ; 7(1): 16674, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192231

RESUMEN

WRKY transcription factors (TFs) play important roles in stress responses in planta. However, the function of WRKY TFs in the regulation of fruit ripening is unclear. Here, 23 tomato SlWRKYs that are similar to ethylene-responsive WRKY genes from other plant species, or show up-regulation during fruit ripening in previous genome-wide study, were selected, and their function in fruit ripening was investigated. Twelve SlWRKYs were found to be responsive to ethylene (SlER-WRKYs), showing expression patterns similar to those of genes related to fruit ripening. Eight SlER-WRKYs-SlWRKY16, 17, 22, 25, 31, 33, 53, and 54, detected in the nuclei-interacted with and activated the promoters of 4 genes related to color change: Pheophytin Pheophorbide Hydrolase (SlPPH), Pheophorbide a Oxygenase (SlPAO), Phytoene Synthase 1 (SlPSY1) and Phytoene Desaturase (SlPDS). Yeast two-hybrid and bimolecular fluorescence complement (BiFC) assays in Arabidopsis protoplasts indicated that protein interactions occurred between SlWRKY17 and SlRIN, SlERF2b or SlERF7; SlWRKY33 and SlERF7; SlWRKY54 and SlERF2b; and SlWRKY16 and SlWRKY17. Suppression of SlWRKY 16, 17, 53 or 54 by virus-induced gene silencing (VIGS) retarded the red coloration of the fruit. Our study provides comprehensive molecular evidence that WRKY TFs function in fruit ripening, particularly in color change, and are linked to the intricate regulatory network of other ripening regulators.


Asunto(s)
Etilenos/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Pigmentación/genética , Solanum lycopersicum/genética , Factores de Transcripción/genética , Perfilación de la Expresión Génica , Silenciador del Gen , Genes Reporteros , Estudios de Asociación Genética , Interacciones Huésped-Patógeno , Solanum lycopersicum/clasificación , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/virología , Fenotipo , Filogenia , Regiones Promotoras Genéticas , Unión Proteica , Transporte de Proteínas , Factores de Transcripción/metabolismo , Activación Transcripcional , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA